• Title/Summary/Keyword: Chemical Warfare Agent (CWA)

Search Result 9, Processing Time 0.023 seconds

Adsorption and Desorption of Chemical Warfare Agent Simulants on Silica Surfaces with Hydrophobic Coating

  • Park, Eun Ji;Kim, Young Dok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.1967-1971
    • /
    • 2013
  • Aim of our study is finding adsorbents suitable for pre-concentration of chemical warfare agents (CWAs). We considered Tenax, bare silica and polydimethylsiloxane (PDMS)-coated silica as adsorbents for dimethyl methylphosphonate (DMMP) and dipropylene glycol methyl ether (DPGME). Tenax showed lower thermal stability, and therefore, desorption of CWA simulants and decomposition of Tenax took place simultaneously. Silica-based adsorbents showed higher thermal stabilities than Tenax. A drawback of silica was that adsorption of CWA simulant (DMMP) was significantly reduced by pre-treatment of the adsorbents with humid air. In the case of PDMS-coated silica, influence of humidity for CWA simulant adsorption was less pronounced due to the hydrophobic nature of PDMS-coating. We propose that PDMS-coated silica can be of potential importance as adsorbent of CWAs for their pre-concentration, which can facilitate detection of these CWAs.

Study on the formulations for Topical Skin Protectant against Liquid-Phase Chemical Warfare Agents (액체성 화학작용제의 흡수를 차단하는 피부보호제 제제 설계 연구)

  • Kim, Sang Woong;Seo, Dong Sung;Son, Hong Ha;Yu, Chi Ho;Joe, Hae Eun;Cho, Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.210-217
    • /
    • 2022
  • Chemical warfare agents(CWA) such as nerve agents and vesicating agents show lethality by skin contamination. Skin protection, therefore, is one of the top priorities to deal with the growing threat from CWA. In an attempt to develop the most effective topical skin protectant(TSP), candidate substances including PFPE(perfluorinated polyether), PTFE(polytetrafluoroethylene), glycerin, and polysaccharides were evaluated in forms of various formulations against nerve agent simulant DMMP(dimethylmethyl phosphonate) penetration. The protective efficacy of the formulation against DMMP penetration was estimated as the onset time of color change of the KM9 chemical agent detection paper. Based on this study, it was found that several PFPE- and glycerin-based formulations exhibit remarkably superior efficacy as a protective cream. This protective cream is expected to be used as TSP for military application after further research.

In-vitro Tests of Topical Skin Protectants using a Flow-Through Diffusion Cell System Containing Excised Hairless Mouse Skin (생체 피부조직을 이용한 피부보호제 in-vitro 시험평가)

  • Lee, Eun Young;Choi, Hoo Kyun;Kim, Sang Woong;Seo, Dong Sung;Joe, Hae Eun;Yu, Chi Ho;Kim, Chang Hwan;Cho, Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.434-442
    • /
    • 2022
  • Highly toxic chemical warfare agents(CWA) could be used in chemical warfare and terrorism. The protection of skin is crucial for civilians and soldiers, because the primary routes of exposure to CWA are inhalation and skin absorption. Thus, topical skin protectants(TSP) have been studied and developed in many countries to complement protective equipments. In this study, in-vitro test procedure was optimized and established using a flow-through diffusion cell system containing excised hairless mouse skin in an attempt to assess the effectiveness of various TSP formulations against nerve agent simulants. In addition, the test results on the formulations including the ingredients used in SERPACWA(Skin Exposure Reduction Paste Against Chemical Warfare Agent) and IB-1(TSP of Israel) were included, indicating that the formulations with perfluorinated compounds were more effective than the glycerin-based formulations.

Chemiresistive Gas Sensors for Detection of Chemical Warfare Agent Simulants

  • Lee, Jun Ho;Lee, Hyun-Sook;Kim, Wonkyung;Lee, Wooyoung
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.139-145
    • /
    • 2019
  • Precautionary detection of chemical warfare agents (CWAs) has been an important global issue mainly owing to their toxicity. To achieve proper detection, many studies have been conducted to develop sensitive gas sensors for CWAs. In particular, metal-oxide semi-conductors (MOS) have been investigated as promising sensing materials owing to their abundance in nature and excellent sensitivity. In this review, we mainly focus on various MOS-based gas sensors that have been fabricated for the detection of two specific CWA simulants, 2-chloroethyl ethyl sulfide (2-CEES) and dimethyl methyl phosphonate (DMMP), which are simulants of sulfur mustard and sarin, respectively. In the case of 2-CEES, we mainly discuss $CdSnO_3-$ and ZnO-based sensors and their reaction mechanisms. In addition, a method to improve the selectivity of ZnO-based sensors is mentioned. Various sensors and their sensing mechanisms have been introduced for the detection of DMMP. As the reaction with DMMP may directly affect the sensing properties of MOS, this paper includes previous studies on its poisoning effect. Finally, promising sensing materials for both gases are proposed.

Effect of Hydrophobic Coating on Silica for Adsorption and Desorption of Chemical Warfare Agent Simulants Under Humid Condition

  • Park, Eun Ji;Cho, Youn Kyoung;Kim, Dae Han;Jeong, Myung-Geun;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.148.2-148.2
    • /
    • 2013
  • We prepared hydrophobic PDMS-coated porous silica as pre-concentration adsorbent for chemical warfare agents (CWAs). Since CWAs can be harmful to human even with a small amount, detecting low-concentration CWAs has been attracting attention in defense development. Porous silica is one of the promising candidates for CWAs pre-concentration adsorbent since it is thermally stable and its surface area is sufficiently high. A drawback of silica is that adsorption of CWAs can be significantly reduced due to competitive adsorption with water molecule in air since silica is quite hydrophilic. In order to solve this problem, hydrophobic polydimethylsiloxane (PDMS) thin film was deposited on silica. Adsorption and desorption of chemical warfare agent (CWA) simulants (Dimethylmethylphosphonate, DMMP and Dipropylene Glycol Methyl Ether, DPGEM) on bare and PDMS-coated silica were studied using temperature programed desorption (TPD) with and without co-exposing of water vapor. Without exposure of water vapor, desorbed amount of DMMP from PDMS-coated silica was twice larger than that from bare silica. When the samples were exposed to DMMP and water vapor at the same time, no DMMP was desorbed from bare silica due to competitive adsorption with water. On the other hand, desorbed DMMP was detected from PDMS-coated silica with reduced amount compared to that from the sample without water vapor exposure. Adsorption and desorption of DPGME with and without water vapor exposing was also investigated. In case of bare silica, all the adsorbed DPGME was decomposed during the heating process whereas molecular DPGME was observed on PDMS-coated silica. In summary, we showed that hydrophobic PDMS-coating can enhance the adsorption selectivity toward DMMP under humid condition and PDMS-coating also can have positive effect on molecular desorption of DPGME. Therefore we propose PDMS-coated silica could be an adequate adsorbent for CWAs pre-concentration under practical condition.

  • PDF

Classification of Chemical Warfare Agents Using Thick Film Gas Sensor Array (후막 센서 어레이를 이용한 화학 작용제 분류)

  • Kwak Jun-Hyuk;Choi Nak-Jin;Bahn Tae-Hyun;Lim Yeon-Tae;Kim Jae-Chang;Huh Jeung-Soo;Lee Duk-Dong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.81-87
    • /
    • 2004
  • Semiconductor thick film gas sensors based on tin oxide are fabricated and their gas response characteristics are examined for four simulant gases of chemical warfare agent (CWA)s. The sensing materials are prepared in three different sets. 1) The Pt or Pd $(1,\;2,\;3\;wt.\%)$ as catalyst is impregnated in the base material of $SnO_2$ by impregnation method.2) $Al_2O_3\;(0,\;4,\;12,\;20\;wt.\%),\;In_2O_3\;(1,\;2,\;3\;wt.\%),\;WO_3\;(1,\;2,\;3\;wt.\%),\;TiO_2\;(3,\;5,\;10\;wt.\%)$ or $SiO_2\;(3,\;5,\;10\;wt.\%)$ is added to $SnO_2$ by physical ball milling process. 3) ZnO $(1,\;2,\;3,\;4,\;5\;wt.\%)$ or $ZrO_2\;(1,\;3,\;5\;wt.\%)$ is added to $SnO_2$ by co-precipitation method. Surface morphology, particle size, and specific surface area of fabricated sensing films are performed by the SEM, XRD and BET respectively. Response characteristics are examined for simulant gases with temperature in the range 200 to $400^{\circ}C$, with different gas concentrations. These sensors have high sensitivities more than $50\%$ at 500ppb concentration for test gases and also have shown good repetition tests. Four sensing materials are selected with good sensitivity and stability and are fabricated as a sensor array A sensor array Identities among the four simulant gases through the principal component analysis (PCA). High sensitivity is acquired by using the semiconductor thick film gas sensors and four CWA gases are classified by using a sensor array through PCA.

Persulfate Oxidation of 2,4-D: Effect of Hydroxylamine and Chelating Agent (과황산을 이용한 2,4-D의 산화: 하이드록실아민, 킬레이트제의 영향)

  • Choi, Jiyeon;Yoon, Na Kyeong;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.54-64
    • /
    • 2021
  • The chemical warfare agents (CWAs) have been developed for offensive or defensive purposes and used as chemical weapons in war and terrorism. The CWAs are exposed to the natural environment, transported through the water system and then eventually contaminate soil and groundwater. Therefore, effective decontamination technology to remediate CWAs are needed. The CWAs are extremely dangerous and prodution is strictly prohibited, therefore, it is difficult to use CWAs even in experimental purpose. In this study, 2,4-dichlorophenoxyacetic acid (2,4-D) was chosen as a model representative CWA because it is a simulant of anti-plant CWAs and one of the major component of agent orange. The optimum degradation conditions such as oxidant:activator ratio were determined. The effects of hydroxylamine and chelating agents such as citric acid (CA), oxalic acid (OA), malic acid (MA), and EDTA addition to increase Fe2+ activation were also investigated. Scavenger experiments using tert-butyl alcohol (TBA) and ethanol confirmed that although both sulfate (SO4•-) and hydroxyl radical (•OH) existed in Fe2+-persulfate system, sulfate radical was the predominant radical. To promote the Fe2+ activator effect, the effect of hydroxylamine as a reducing agent was investigated. In chelating agents assisted Fe2+-persulfate oxidation, the addition of 2 mM of CA and MA enhanced 2,4-D degradation. In contrast, EDTA and OA inhibited the 2,4-D removal due to steric hindrance effect.

Recent Trend in Catalysis for Degradation of Toxic Organophosphorus Compounds (유기인 계열 독성화합물 분해를 위한 촉매반응의 최신 연구 동향)

  • Kye, Young-Sik;Jeong, Keunhong;Kim, Dongwook
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.513-522
    • /
    • 2019
  • Catalysts based on organic compounds, transition metal and metal-organic frameworks (MOFs) have been applied to degrade or remove organophosphorus toxic compounds (OPs). During the last 20 years, various MOFs were designed and synthesized to suit application purposes. MOFs with $Zr_6$ based metal node and organic linker were widely used as catalysts due to their tunability for the pore size, porosity, surface area, Lewis acidic sites, and thermal stability. In this review, effect on catalytic efficiency between MOFs properties according to the structure, stability, particle size, number of connected-ligand, organic functional group, and so on will be discussed.

Recent Trend in Bioscavengers for Inactivation of Toxic Organophosphorus Compounds (유기인 계열 독성물질 분해를 위한 바이오스캐빈저 최신 연구 동향)

  • Kim, Heejeong;Jeong, Keunhong;Kye, Young-Sik
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.125-137
    • /
    • 2020
  • In recent years, toxic organophosphorus compounds (OPs) have been used for civilians, becoming a great threat to the world. Alternative to the current treatment policy unpredictable for any prevention, researches on bioscavenger as an improved treatment have been actively conducted. Bioscavengers refer to proteins and enzymes that prevent intoxication by inactivating or binding toxic OPs before they reaches the target. In particular, extensive efforts have been made to develop catalytic bioscavengers that quickly detoxify OPs even with a small dose of the protein by performing multiple binding and hydrolysis processes with OPs. This review introduces the latest studies and results for developing catalytic bioscavengers using molecular evolution and protein engineering techniques. We will briefly present some of the remaining challenges on developing enzymes into clinically approved drugs.