• Title/Summary/Keyword: Chemical Vapor Reaction

Search Result 305, Processing Time 0.024 seconds

A Study on Expedite Heat Transfer in Packed Bed of Hydration Calcined Dolomite for Chemical Heat Pump (소성 Dolomite 수화물 화학열펌프의 고체반응층 전열촉진 연구)

  • Kim, Jong-Shik;Lee, Han-Gyu;Park, Young-Hae
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.434-439
    • /
    • 2005
  • The reaction of hydration proceeded at the same time the vapor was introduced into the reactor that was filled with calcined dolomite. It has shown that the temperature has begun to fall from the bottom of reactor after increase of temperature by the heat of hydration reaction. The reaction initiated at the pipe wall and the heat was transfer to the center of block between the fins. The results show that the use of copper fin in the reactor reducted the hydration reaction time by half when compared to the case without using the fins.

Analysis of Radiative Heat Transfer and Mass Transfer During Multi-Wafer Low Pressure Chemical Vapor Deposition Process (저압 증기 화합물 증착 공정에서 복사열전달 및 물질전달 해석)

  • Park, Kyoung-Soon;Choi, Man-Soo;Cho, Hyoung-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.9-20
    • /
    • 2000
  • An analysis of heat and mass transfer has been carried out for multi-wafer Low Pressure Chemical Vapor Deposition (LPCVD). Surface radiation analysis considering specular radiation among wafers, heaters, quartz tube and side plates of the reactor has been done to determine temperature distributions of 150 wafers in two dimensions. Velocity, temperature and concentration fields of chemical gases flowing in a reactor with multi-wafers have been then determined, which determines Si deposition growth rate and uniformity on wafers using two different surface reaction models. The calculation results of temperatures and Si deposition have been compared and found to be in a reasonable agreement with the previous experiments.

A study of unsteady heat and mass transfer in the modified chemical vapor deposition process (수정된 화학증착방법에서 비정상 열 및 물질전달 해석)

  • Park, Gyeong-Sun;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.79-88
    • /
    • 1997
  • An analysis of unsteady heat and mass transfer in the Modified Chemical Vapor Deposition has been carried out including the effects of chemical reaction and variable properties. It was found that commonly used quasi-steady state assumption could be used to predict overall efficiency of deposition, however, the assumption would not provide detailed deposition profile. The present unsteady calculations of wall temperature profile and deposition profile have been compared with the existing experimental data and were in good agreement. The effects of variable torch speed were studied. Linearly varying torch speed case until time=120s resulted in much shorter tapered entry than the constant torch speed case.

Optical properties of amorphous $Si_xC_yN_z$ ternary thin films prepared by plasma enhanced chemical vapor deposition

  • Zhang, Z.H.;Fan, X.J.;Guo, H.X.;Zhang, W.;Zhang, C.Y.;Luo, F.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.190-196
    • /
    • 1998
  • Amorphous ternary $Si_xC_yN-z$ thin films were obtained by plasma enhanced chemical vapor deposition(PECVD) using $N_2, SiH_4 \;and \;C_2H_4$ as the reaction sources. The chemical state were characterized by x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FTIR). The optical properties of the thin films were investigated by UV-visible spectrophotometer and ellipsometer, and the optical band gaps of thin films were determined from corresponding transmittance spectra following Tauc equation.

  • PDF

Chemical Vapor Deposition of Tungsten on TiN Surface (TiN 표면위에 텅스텐의 화학증착)

  • Yi, Chung;Rhee, Shi-Woo;Lee, Kun-Hong
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.4
    • /
    • pp.49-57
    • /
    • 1992
  • Tungsten film was deposited on the TiN surface in a low pressure chemical vapor deposition reactor and chemical reaction mechanism between TiN surface and ($WF_{6}\;and\;SiH_{4}$ was studied. Interaction of ($WF_{6}\;or\;SiH_{4}$ with TiN surface and tungsten was deposited more easily. $WF_6$ reacted with TiN activated the TiN surface to form volatile TiF_4$ and tungsten nuclei were formed. ($SiH_{4}$ was dissociated on the TiN surface to form silicon nuclei. From RBS and AES analysis, we could not detect the impurities(such as Si or TiF$_x$)at the interface between tungsten and TiN. The adhesion at the W/TiN interface became poor when the deposition temperature was below 275$^{\circ}C$.

  • PDF

Reaction Kinetic Study on Pyrolysis of Waste Polystyrene using Wetted Column Reactor (Wetted Column 반응기를 이용한 폴리스티렌 열분해 반응속도론적 연구)

  • You, Young Gil;Yoon, Byung Tae;Kim, Seong Bo;Choi, Myoung Jae;Choi, Cheong Song
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.535-539
    • /
    • 2008
  • Conversion to oil, yield of styrene and formation of side products such as ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene, dimer and trimer were affected by residue formed during thermal degradation. Also, control of reaction temperature had a difficulty at the first stage. Thus, new reaction system using wetted-wall type reactor was proposed and examined on various parameters such as reaction temperature, feeding rate and removal velocity of formed vapor. Optimun condition was obtained from continuous thermal degradation using wetted-wall type reactor and reaction kinetic study was carried out at new type reactor.

Preparation of SnO$_2$ Thin Films by Chemical Vapor Deposition Using Hydrolysis of SnCla$_4$ and Gas-sensing Characterisics of the Film -Effect of Deposition Variables on the Deposition Behavior and the Electrical Resistivity of SnO$_2$ Thin Film- (SnCl$_4$가수분해 반응의 화학증착법에 의한 SnO$_2$박막의 제조 및 가스센서 특징(I) Preparation of SnO2 Thin Films by chemical Vapor Deposition Using Hydrolysis of SnCl4 and gas-sensing characteristics of the Film)

  • 김용일;김광호;박희찬
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.2
    • /
    • pp.18-23
    • /
    • 1990
  • Thin films of tin oxide were prepared by chemical vapor deposition (C.V>D) using the hydrolysis reaction of SnCl4, Deposition rate increased with the increase of temperature up to $500^{\circ}C$and then decreased at $700^{\circ}C$, Deposition rate with SnCl4 partial pressure showed RidealEley behavir. It was found that SnO2 thin film deposited at the temperature above $400^{\circ}C$ had(110) and (301) plane preferred orientation with crystallinity of rutite structure. Electrical resisvity of SnO2 thin film decreased with increase increase of deposition temperature and showed minimum value of 10-3 ohm at $500^{\circ}C$and than largely increased increased with further increase of deposition temperture.

  • PDF

Chemical Vapor Deposition of Ga2O3 Thin Films on Si Substrates

  • Kim, Doo-Hyun;Yoo, Seung-Ho;Chung, Taek-Mo;An, Ki-Seok;Yoo, Hee-Soo;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.225-228
    • /
    • 2002
  • Amorphous $Ga_2O_3$ films have been grown on Si(100) substrates by metal organic chemical vapor deposition (MOCVD) using gallium isopropoxide, $Ga(O^iPr)_3$, as single precursor. Deposition was carried out in the substrate temperature range 400-800 $^{\circ}C$. X-ray photoelectron spectroscopy (XPS) analysis revealed deposition of stoichiometric $Ga_2O_3$ thin films at 500-600 $^{\circ}C$. XPS depth profiling by $Ar^+$ ion sputtering indicated that carbon contamination exists mostly in the surface region with less than 3.5% content in the film. Microscopic images of the films by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed formation of grains of approximately 20-40 nm in size on the film surfaces. The root-mean-square surface roughness from an AFM image was ${\sim}10{\AA}$. The interfacial layer of the $Ga_2O_3$/Si was measured to be ${\sim}35{\AA}$ thick by cross-sectional transmission electron microscopy (TEM). From the analysis of gaseous products of the CVD reaction by gas chromatography-mass spectrometry (GC-MS), an effort was made to explain the CVD mechanism.

Application of Pulsed Chemical Vapor Deposited Tungsten Thin Film as a Nucleation Layer for Ultrahigh Aspect Ratio Tungsten-Plug Fill Process

  • Jang, Byeonghyeon;Kim, Soo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.486-492
    • /
    • 2016
  • Tungsten (W) thin film was deposited at $400^{\circ}C$ using pulsed chemical vapor deposition (pulsed CVD); film was then evaluated as a nucleation layer for W-plug deposition at the contact, with an ultrahigh aspect ratio of about 14~15 (top opening diameter: 240~250 nm, bottom diameter: 98~100 nm) for dynamic random access memory. The deposition stage of pulsed CVD has four steps resulting in one deposition cycle: (1) Reaction of $WF_6$ with $SiH_4$. (2) Inert gas purge. (3) $SiH_4$ exposure without $WF_6$ supply. (4) Inert gas purge while conventional CVD consists of the continuous reaction of $WF_6$ and $SiH_4$. The pulsed CVD-W film showed better conformality at contacts compared to that of conventional CVD-W nucleation layer. It was found that resistivities of films deposited by pulsed CVD were closely related with the phases formed and with the microstructure, as characterized by the grain size. A lower contact resistance was obtained by using pulsed CVD-W film as a nucleation layer compared to that of the conventional CVD-W nucleation layer, even though the former has a higher resistivity (${\sim}100{\mu}{\Omega}-cm$) than that of the latter (${\sim}25{\mu}{\Omega}-cm$). The plan-view scanning electron microscopy images after focused ion beam milling showed that the lower contact resistance of the pulsed CVD-W based W-plug fill scheme was mainly due to its better plug filling capability.

XPS Analysis of Acrylic Acid Films Polymerized by Remote Plasma-Enhanced Chemical Vapor Deposition (원격 플라즈마 화학기상증착법에 의해 중합된 아크릴산 필름의 XPS 분석)

  • Kim, Seonghoon;Seomoon, Kyu
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.536-541
    • /
    • 2009
  • Plasma-polymerized acrylic acid films were deposited on Si wafer and KBr pellet by remote plasma-enhanced chemical vapor deposition (PECVD). Effects of plasma power, reaction pressure, indirect plasma method on the growth rate, chemical structure, and chemical bonding state of the films were investigated. Chemical structure and chemical state of the films were characterized by Fourier transformed infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis and curve fitting technique. Growth rate of the film increased to a saturation value with plasma power of 100 W, but showed the maximum with reaction pressure at 300 mtorr. Whenever W/FM factor (applied energy per gas molecule) increased by increasing plasma power or lowering pressure, the fragmentation of acrylic acid molecules was promoted. From the XPS curve fitting analyses, we found that the intensity of carboxyl COO bonding peak decreased with W/FM factor, and the tendency of intensity change of carboxylic COO peak was contrary to those of ether C-O and carbonyl C=O peaks.