• Title/Summary/Keyword: Chemical Tools

Search Result 335, Processing Time 0.021 seconds

Isolation of the Arabidopsis Phosphoproteome Using a Biotin-tagging Approach

  • Kwon, Sun Jae;Choi, Eun Young;Seo, Jong Bok;Park, Ohkmae K.
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.268-275
    • /
    • 2007
  • Protein phosphorylation plays a key role in signal transduction in cells. Since phosphoproteins are present in low abundance, enrichment methods are required for their purification and analysis. Chemical derivatization strategies have been devised for enriching phosphoproteins and phosphopeptides. In this report, we employed a strategy that replaces the phosphate moieties on serine and threonine residues with a biotin-containing tag via a series of chemical reactions. Ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBISCO)-depleted protein extracts prepared from Arabidopsis seedlings were chemically modified for 'biotin-tagging'. The biotinylated (previously phosphorylated) proteins were then selectively isolated by avidin-biotin affinity chromatography, followed by two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). This led to the identification of 31 protein spots, representing 18 different proteins, which are implicated in a variety of cellular processes. Despite its current technical limitations, with further improvements in tools and techniques this strategy may be developed into a useful approach.

Shockwave Simulations and Visualization for Teaching Quantum Chemistry (양자화학 교육을 위한 쇽웨이브 시뮬레이션 및 시각화)

  • Lee, Chang-Jae
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.2
    • /
    • pp.166-174
    • /
    • 2009
  • Quantum chemistry has many concepts that are either abstract or counterintuitive, giving students difficulties in understanding them. Fortunately, the advancement of web technologies provides us with hordes of powerful tools to produce rich multimedia web applications that supplement traditional classroom teaching. In this paper we present an approach to address this issue that combines interactive simulations and visualization on the web browser using Shockwave technology. With several examples, we show how to take advantage of the features of the Shockwave technology in developing web-based course material with ease.

Quantitative Determination of the Chromophore Alignment Induced by Electrode Contact Poling in Self-Assembled NLO Materials

  • Kim, Tae-Dong;Luo, Jingdong;Jen, Alex K.-Y.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.882-886
    • /
    • 2009
  • The electrode contact poling is one of the efficient tools to induce a stable polar order of nonlinear optical (NLO) chromophores in the solid film. Self-assembled NLO chromophores with high electro-optic (E-O) activities were utilized for quantitative determination of the chromophore order induced under contact poling by spectroscopic changes. We found that NLO chromophores rarely decompose under the high electric field during contact poling. The absorption spectra were de-convoluted into a sum of Gaussian components to separate energy transitions for a binary composite system which contains a secondary guest chromophore AJC146 in the self-assembled chromophore HDFD. Poling efficiency was significantly improved in the binary system compared to the individual components.

SCANNING PROBE NANOPROCESSING

  • Sugimura, Hiroyuki;Nakagiri, Nobuyuki
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.314-324
    • /
    • 1996
  • Scanning probe microscopes (SPMs) such as the scanning tunneling microscope (STM) and the atomic force microscope (AFM) were used for surface modification tools at the nanometer scale. Material surfaces, i. e., titanium, hydrogen-terminated silicon and trimethylsilyl organosilane monolayer on silicon, were locally oxidized with the best lateral spatial resolution of 20nm. The principle behind this proximal probe oxidation method is scanning probe anodization, that is, the SPM tip-sample junction connected through a water column acting as a minute electrochemical cell. An SPM-nanolithogrphy process was demonstrated using the organosilane monolayer as a resist. Area-selective chemical modifications, i. e., etching, electroless plating with gold, monolayer deposition and immobilization of latex nanoparticles; were achieved in nano-scale resolution. The area-selectivity was based on the differences in chemical properties between the SPM-modified and unmodified regions.

  • PDF

A Study of Cutting Factor Analysis and Reliability Evaluation of ASTM(F136-96) Material by Taguchi Method (다구치 방법에 의한 ASTM(F136-96)의 절삭인자 분석과 신뢰성 평가)

  • Jang, Sung-Minl;Yun, Yeo-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2008
  • Machine operator and quality are affected by chip during cutting process to product machine parts. This paper presents a study of the influence of cutting conditions on the surface roughness obtained by turning using Taguchi method for safety of turning operator. In the machining of titanium alloy, high cutting temperature and strong chemical affinity between the tool and the work material are generated because of its low thermal conductivity and chemical reactivity. Therefore titanium alloys are known as difficult-to materials. An orthogonal array, the signal-to-noise ratio, the analysis of variance are employed to investigate the cutting characteristics of implant material bars using tungsten carbide cutting tools of throwaway type. Also Experimental results by orthogonal array are compared with optimal condition to evaluate advanced reliability. Required simulations and experiments are performed, and the results are investigated.

Wear Characteristics of Coated $Si_3N_4$-TiC Ceramic Tool (Coated $Si_3N_4$-TiC Ceramic 공구의 마모 특성)

  • 김동원;권오관;이준근;천성순
    • Tribology and Lubricants
    • /
    • v.4 no.2
    • /
    • pp.44-51
    • /
    • 1988
  • Titanium carbide(TiC), Titanium nitride(TiN), and Titanium carbonnitride(Ti(C,N)) films were deposited on $Si_3N_4$-TiC composite cutting tools by chemical vapor deposition(CVD) using $TiCl_4-CH_4-H_2$, $TiCl_4-N_2-H_2$, and $TiCl_4-CH_4-N_2-H_2$ gas mixtures, respectively. The experimental results indicate that TiC coatings compared with TiN coatings on $Si_3N_4$ -TiC ceramic have an improved microstructural property, good thermal shock resistance, and good interfacial bonding. However TiN coatings compared with TiC coatings have a low friction coefficient with steel and good chemical stability. It is found by cutting test that coated insert compared with $Si_3N_4$-TiC ceramic have a superior flank and crater wear resistance. And multilayer coating compared with monolayer coating shows a improved wear resistance.

A Study on the Characterization on Some Semiconuctor Materials by Neutron Activation Analysis. Characterization of Semiconductor Silicon

  • Lee Chul;Kwun Oh Cheun;Kim Ho Kun;Lee Jong Du;Chung Koo Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.30-32
    • /
    • 1989
  • Traces of nine elements, gold, arsenic, cobalt, chromium, copper, europium, hafnium, sodium and antimony in commercially available silicon crystals were determined by the instrumental neutron activation analysis using the single comparator method. The values of the concentrations of these elements in both single and polycrystals were found to decrease significantly to a low limiting level by simply washing and etching surface contaminants having been introduced during various steps of sample preparation and irradiation. However, the chromium levels in polycrystals were not easily decreased, these depending upon the cutting tools employed. The Sb-doped content in each semiconductor has been compared with the associated quantities such as the concentration and the conductivity range given by the sample donor. Uncertainty in the sodium analysis due to the fission neutron reaction by silicon itself was discussed.

High-resolution 1H NMR Spectroscopy of Green and Black Teas

  • Jeong, Ji-Ho;Jang, Hyun-Jun;Kim, Yongae
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.78-84
    • /
    • 2019
  • High-resolution $^1H$ NMR spectroscopic technique has been widely used as one of the most powerful analytical tools in food chemistry as well as to define molecular structure. The $^1H$ NMR spectra-based metabolomics has focused on classification and chemometric analysis of complex mixtures. The principal component analysis (PCA), an unsupervised clustering method and used to reduce the dimensionality of multivariate data, facilitates direct peak quantitation and pattern recognition. Using a combination of these techniques, the various green teas and black teas brewed were investigated via metabolite profiling. These teas were characterized based on the leaf size and country of cultivation, respectively.

Low Energy Ion-Surface Reactor

  • Choi, Won-Yong;Kang, Tae-Hee;Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.290-296
    • /
    • 1990
  • Ion-surface collision studies at low kinetic energies (1-100 eV) provide a unique opportunity for investigating reactions and collision dynamics at surfaces. A special ion optics system for generating an energy- and mass-selected ion beam of this energy is designed and constructed. An ultrahigh vacuum (UHV) reaction chamber, in which the ions generated from the beamline collide with a solid surface, is equipped with Auger electron spectroscopy (AES) and thermal desorption spectrometry (TDS) as in-situ surface analytical tools. The resulting beam from the system has the following characteristics : ion current of 5-50 nA, energy spread < 2eV, current stability within ${\pm}5%,$ and unit mass resolution below 20 amu. The performance of the instrument is illustrated with data representing the implantation behavior of $Ar^+$ into a graphite (0001) surface.

Chemodynamics Of Ultra Metal-Poor (UMP; [Fe/H] < -4.0) Stars in the Milky Way

  • Jeong, MiJi;Lee, Young Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.50.1-50.1
    • /
    • 2019
  • Ultra Metal-Poor (UMP; [Fe/H] < -4.0) stars are thought to be true second generation of stars. Thus, the chemistry and kinematics of these stars serve as powerful tools to understand the early evolution of the Milky Way (MW). However, only about 40 of these stars have been discovered thus far. To increase the number of these stars, we selected UMP candidates from low-resolution spectra (R ~ 2000) of the Sloan Digital Sky Survey (SDSS) and Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST), and performed high-resolution (R ~ 40,000) spectroscopic follow-ups with Gemini/GARACES. In this study, we present chemical and kinematic properties of the observed UMP candidates, and infer the nature of their progenitors to trace the chemical enrichment history of the MW.

  • PDF