• Title/Summary/Keyword: Chemical Tools

Search Result 335, Processing Time 0.019 seconds

A Study of the Preferred Methods and Strategies of Science Learning in Middle School Students (중학교 학생의 과학 학습 방법 및 전략에 관한 연구)

  • Kim, Hyo Jin;Kim, Youn Kyoo;Park, Hyun Ju
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.552-563
    • /
    • 1999
  • The study investigated and analyzed the middle school student's science textbook learning methods and strategies. The Preferred Mehtod of Study (PMOS) and a clinical interview method were utilized. Results indicate that there is a meaningful and significant positive correlation between the number of times students read a chapter of the science textbook and their science grade point. Students do not tend to alter learning strategies dependent upon the subject matter studied, but easily alter stratgies dependent upon the types of the test. Most students could not construct "organiztional tools" such as a summary, a chart, a talbe, or a figure when they study textbook, but might pursure and prefer only one method when they choose their learning strategise. Very few students (less than 1%) among those queried consciously try to connect between prior knowledge and new concepts in the textbook. Even though students choose the textbook for learning science in the beginning, they prefer to stick to reference and exercise materials. Therefore, detailed and direct studise of the student's learning methods and strategies, as well as research on cognitive psychology and motivational psychology, are necessary in order to develop a new textbook with student-based learning materials. By understanding the student's konwledge level through investigation of his or her learning style, an effective science education program can be realized. Finally, the role of the textbook as a tezching/learning material can be maximized by investigating and understanding the student's learning method and strategy with emphasis on reciprocal action between textbooks.

  • PDF

Technical Review on Methodology of Generating Exposure Scenario in eSDS of EU REACH (유럽 신화학물질관리제도의 eSDS에 첨부되는 노출시나리오 작성법 개발 동향)

  • Choe, Eun-Kyung;Kim, Jong-Woon;Kim, Sang-Hun;Byun, Sung-Won
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.285-299
    • /
    • 2011
  • As one of the REACH obligations, the extended safety data sheet (eSDS) should be communicated within the supply chain under the REACH Regulation. Based on technical guidance documents published on the ECHAs website and survey of EU's recent REACH-related informations, this paper includes a study on details of how to develop exposure scenarios (ES) such as structure of ES, process of ES develpoment, standard workflows and key input data to develop ES with an introduction of eSDS concept. This paper also contains an overview on operational conditions (OCs) and risk management measures (RMMs) that are what to consider when building an ES. The structure of Chesar (Chemical Safety Assessment and Report tool) developed by European Chemicals Agency (ECHA) is studied with a review of the available exposure estimation tools for workers, environment and consumers. Case example of generic exposure scenario (GES) for organic solvent is presented. To guide Korean EU-exporting companies, their participating roles in three steps of preparing ES are addressed.

Understanding the Mechanism of Indomethacin-Saccharin Co-crystal Formation Using In-line Monitoring System based on PVM and FBRM (PVM 및 FBRM 기반 인라인 모니터링을 통한 indomethacin-saccharin 공결정의 생성 메커니즘이해)

  • Kim, Paul;Cho, Min-Yong;Choi, Guang J.
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.180-189
    • /
    • 2017
  • Pharmaceutical co-crystals primarily to improve the solubility as well as stability of insoluble drug are to be investigated more intensively for IMDs as US FDA has reclassified co-crystal as a special case of solvates in August this year. In this study, we proposed a mechanism of indomethacin-saccharin co-crystal formation and the creation of transient indomethacin meta-stable form using in-line monitoring tools with the addition rate of anti-solvent as a critical process parameter. Among various instruments, we combined PVM (particle vision measurement) and FBRM (focused beam reflectance measurement) for the in-line monitoring of anti-solvent co-crystallization process. The off-line characterization of resulting powders was carried out employing the PXRD (powder x-ray diffraction) and DSC (differential scanning calorimeter). It was observed that the pathway to the final IMC-SAC co-crystal was significantly dependent upon the anti-solvent addition rate. The process conditions to obtain high quality co-crystal powder effectively were established. Consequently, we concluded that in-line monitoring combing the PVM and FBRM should be useful for the in-line monitoring of pharmaceutical co-crystallization processes.

Present and Future of Thermoplastic Elastomers As Environmentally Friendly Organic Materials (친환경 유기 소재로서 열가소성 탄성체의 오늘과 내일)

  • Choi, Eun-Ji;Yoon, Ji-Hwan;Jo, Jung-Kyu;Shim, Sang-Eun;Yun, Ju-Ho;Kim, Il
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.170-187
    • /
    • 2010
  • Much interest on the thermoplastic elastomers (TPEs) has recently been attracted in commercial fields as well as scientific and applied researches. The TPEs have their own characteristic area especially in relation with block copolymers as well as many other polymeric materials, since they show interesting features displayed by the conventional vulcanized rubber, and at the same time, by the thermoplastics. In addition, they are characterized by a set of interesting properties inherent to block and graft copolymers, variety of blends and vulcanized materials. The importance of TPE as organic materials can be evaluated by the number of published reports (papers, patents, technical reports, etc). The input of the concept 'thermoplastic elastomer' to SciFinderScholar yields 18,508 results between 1939 and July 10, 2010, and the number increased exponentially after the mid of 1990. For the suitable introduction of the TPE, historic, scientific, technical and commercial considerations should be taken into account. This review article starts with a brief discussion on historical considerations, followed by a introduction of the main preparations and analytical techniques utilized in chemical, structural, and morphological studies. The properties, processing tools, the position among organic materials, and applications of TPEs are also briefly reviewed. Finally, the most probable trends of their future development are discussed in a short final remarks.

Detection of Salmonella Using the Loop Mediated Isothermal Amplification and Real-time PCR (등온 증폭법과 Real-time PCR을 이용한 Salmonella 검출)

  • Ahn, Young-Chang;Cho, Min-Ho;Yoon, Il-Kyu;Jung, Duck-Hyun;Lee, Eun-Young;Kim, Jin-Ho;Jang, Won-Cheoul
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.215-221
    • /
    • 2010
  • Salmonella is an important food-and water-borne pathogen associated with acute gastrointestinal illnesses around the world. The most common serotypes isolated from humans are Salmonella enterica serotype Typhimurium (S. Typhimurium) and S. Enteritidis. Traditional detection methods for Salmonella are based on cultures using selective media and characterization of suspicious colonies by biochemical and serological tests. These methods are generally time-consuming and not so highly sensitive. Recently, the Loop Mediated Isothermal Amplification and real-time PCR has been used as a highly sensitive, specific, and rapid test for the presence of pathogenic bacteria. In this study, a LAMP and real-time PCR was used to detect S. Typhimurium and S. Enteritidis. We selected target genes, which were the in invA and a randomly cloned sequence specific for the genus Salmonella. With LAMP and real-time PCR, random sequence was detected from Salmonella spp, invA were detected from all strain of S. Typhimurium and S. Enteritidis. This assay indicate that the specificity, sensitivity and rapid of the LAMP and real-time PCR make them potentially valuable tools for detection of S. Typhimurium and S. Enteritidis.

Polydiacetylene-Based Chemo-/Biosensor of Label Free System with Various Sensing Tools (다양한 감지 방법을 갖고 있는 폴리디아세틸렌 기반 비표지 화학/바이오센서)

  • Park, Hyun-Kyu;Park, Hyun-Gyu;Chung, Bong-Hyun
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.409-413
    • /
    • 2007
  • Polydiacetylene(PDA)-based sensors possess a number of properties that can be successfully applied for label-free detection system. PDA is one of the most attractive color-generating materials, with growing applications as sensors. Here we introduce various PDA-based devices, used as biosensor, chemosensor, thermosensor, and optoelectronics sensor. In general, PDA liposomes and films are closely packed and properly designed for polymerization via 1,4-addition reaction to form an ene-yne alternating polymer chain. PDA-based two/three dimensional structures have been used for colorimetric or fluorescent devices, sensing biological as well as chemical components. This color-generating material also present a very high charge carrier mobility, allowing its application as field-effect transistor (FET). The immobilized PDA structures or films have distinct advantages for the detection of low concentration target molecules over the aqueous solution-based detection systems. In the present review, reported detection methods by using various PDA structures are summarized with updated references.

Science Teachers' Difficulties and Solutions of Free Semester Science Assessment (자유학기제 과학과 평가에서 과학 교사가 겪는 어려움과 해결방안)

  • Kim, Yura;Choi, Aeran
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.3
    • /
    • pp.166-182
    • /
    • 2019
  • This study examined teachers' difficulties that they encountered free semester science assessment and their problem solutions. Fifteen science teachers who had experiences of free semester teaching and assessment were selected by convenience sampling in this study. The participant teachers mentioned difficulties of accurate scoring in student self/peer assessment and suggested solutions of providing studetns with detailed assessment criteria and opportunities to practice assessment. The participant teachers mentioned a lack of objective assessment criteria for affective domain and suggested solutions of providing criteria prior to assessment and developing assessment framework. The participant teachers mentioned a lack of assessment tools and references for perforamnce assesement. The participant teachers mentioned difficulties of a large teacherstudent ratio for providng feedbacks to students and suggested solutions of decreasing teacher-student ratio and teaching load. The participant teachers mentioned difficulties of identifying student characteristics for assessment reporting and suggested solutions of decreaing teacher work load. The participant teachers mentioned a lack of teacher understanding of process based assessment and inactive attitude to performance assessment and suggested solutions of professional learning community and improving teacher perceptions on performance assessment. The participant teachers mentioned difficulties of a large teacher-student ratio and a lack of time for implementing assessment methods that they learned from professional development programs. With both teacher self-efforts and systematic support, these problems would be solved and success of free semester assessment would be achieved.

In-silico annotation of the chemical composition of Tibetan tea and its mechanism on antioxidant and lipid-lowering in mice

  • Ning Wang ;Linman Li ;Puyu Zhang;Muhammad Aamer Mehmood ;Chaohua Lan;Tian Gan ;Zaixin Li ;Zhi Zhang ;Kewei Xu ;Shan Mo ;Gang Xia ;Tao Wu ;Hui Zhu
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.682-697
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Tibetan tea is a kind of dark tea, due to the inherent complexity of natural products, the chemical composition and beneficial effects of Tibetan tea are not fully understood. The objective of this study was to unravel the composition of Tibetan tea using knowledge-guided multilayer network (KGMN) techniques and explore its potential antioxidant and hypolipidemic mechanisms in mice. MATERIALS/METHODS: The C57BL/6J mice were continuously gavaged with Tibetan tea extract (T group), green tea extract (G group) and ddH2O (H group) for 15 days. The activity of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in mice was detected. Transcriptome sequencing technology was used to investigate the molecular mechanisms underlying the antioxidant and lipid-lowering effects of Tibetan tea in mice. Furthermore, the expression levels of liver antioxidant and lipid metabolism related genes in various groups were detected by the real-time quantitative polymerase chain reaction (qPCR) method. RESULTS: The results showed that a total of 42 flavonoids are provisionally annotated in Tibetan tea using KGMN strategies. Tibetan tea significantly reduced body weight gain and increased T-AOC and SOD activities in mice compared with the H group. Based on the results of transcriptome and qPCR, it was confirmed that Tibetan tea could play a key role in antioxidant and lipid lowering by regulating oxidative stress and lipid metabolism related pathways such as insulin resistance, P53 signaling pathway, insulin signaling pathway, fatty acid elongation and fatty acid metabolism. CONCLUSIONS: This study was the first to use computational tools to deeply explore the composition of Tibetan tea and revealed its potential antioxidant and hypolipidemic mechanisms, and it provides new insights into the composition and bioactivity of Tibetan tea.

An Investigation Into the Effects of AI-Based Chemistry I Class Using Classification Models (분류 모델을 활용한 AI 기반 화학 I 수업의 효과에 대한 연구)

  • Heesun Yang;Seonghyeok Ahn;Seung-Hyun Kim;Seong-Joo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.3
    • /
    • pp.160-175
    • /
    • 2024
  • The purpose of this study is to examine the effects of a Chemistry I class based on an artificial intelligence (AI) classification model. To achieve this, the research investigated the development and application of a class utilizing an AI classification model in Chemistry I classes conducted at D High School in Gyeongbuk during the first semester of 2023. After selecting the curriculum content and AI tools, and determining the curriculum-AI integration education model as well as AI hardware and software, we developed detailed activities for the program and applied them in actual classes. Following the implementation of the classes, it was confirmed that students' self-efficacy improved in three aspects: chemistry concept formation, AI value perception, and AI-based maker competency. Specifically, the chemistry classes based on text and image classification models had a positive impact on students' self-efficacy for chemistry concept formation, enhanced students' perception of AI value and interest, and contributed to improving students' AI and physical computing abilities. These results demonstrate the positive impact of the Chemistry I class based on an AI classification model on students, providing evidence of its utility in educational settings.

Differences in Presence, Immersion, and Situation Interest in Small Group Learning Using Augmented Reality Based on the Degree of Tool Sharing (증강현실을 활용한 소집단 학습에서 도구 공유 정도에 따른 현존감, 몰입, 상황흥미의 차이)

  • Taehee Noh;Jaewon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.93-106
    • /
    • 2024
  • This study investigated differences in presence, immersion, and situational interest in small group learning using augmented reality, based on the degree of tool sharing. 84 eighth-grade students participated in small groups of four. Each group was randomly assigned to one of three environments based on marker and device sharing: the shared environment (shared marker and device usage), the mixed environment (shared marker and individual device usage), and the individual environment (individual marker and device usage). Small group learning using augmented reality was conducted for three class periods, focusing on the "Characteristics of Matter" unit. One-way ANOVA results for the dependent variables revealed that, compared to the shared environment, presence and situational interest were significantly higher in the mixed environment, while immersion and situational interest were significantly higher in the individual environment. MANOVA results for the sub-components of each dependent variable showed significant differences in realness for presence, antecedents and experiences for immersion, and instant enjoyment, novelty, and total interest for situational interest. Analysis of interviews and classroom observations indicated that students in shared and individual environments tended to use their devices individually when utilizing augmented reality. However, in mixed environments, students showed a tendency to use their devices collaboratively, leading to more active interactions. Based on these findings, environments for using tools to enhance the effectiveness of small group learning using augmented reality are discussed.