Present and Future of Thermoplastic Elastomers As Environmentally Friendly Organic Materials

친환경 유기 소재로서 열가소성 탄성체의 오늘과 내일

  • Choi, Eun-Ji (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Yoon, Ji-Hwan (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Jo, Jung-Kyu (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Shim, Sang-Eun (Department of Chemical Engineering, Inha University) ;
  • Yun, Ju-Ho (Enviromental Materials & Components R&D Center, Korea Automotive Technology Institute) ;
  • Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
  • 최은지 (부산대학교 고분자공학과) ;
  • 윤지환 (부산대학교 고분자공학과) ;
  • 조정규 (부산대학교 고분자공학과) ;
  • 심상은 (인하대학교 화학공학과) ;
  • 윤주호 (자동차부품연구원) ;
  • 김일 (부산대학교 고분자공학과)
  • Received : 2010.07.13
  • Accepted : 2010.07.23
  • Published : 2010.09.30

Abstract

Much interest on the thermoplastic elastomers (TPEs) has recently been attracted in commercial fields as well as scientific and applied researches. The TPEs have their own characteristic area especially in relation with block copolymers as well as many other polymeric materials, since they show interesting features displayed by the conventional vulcanized rubber, and at the same time, by the thermoplastics. In addition, they are characterized by a set of interesting properties inherent to block and graft copolymers, variety of blends and vulcanized materials. The importance of TPE as organic materials can be evaluated by the number of published reports (papers, patents, technical reports, etc). The input of the concept 'thermoplastic elastomer' to SciFinderScholar yields 18,508 results between 1939 and July 10, 2010, and the number increased exponentially after the mid of 1990. For the suitable introduction of the TPE, historic, scientific, technical and commercial considerations should be taken into account. This review article starts with a brief discussion on historical considerations, followed by a introduction of the main preparations and analytical techniques utilized in chemical, structural, and morphological studies. The properties, processing tools, the position among organic materials, and applications of TPEs are also briefly reviewed. Finally, the most probable trends of their future development are discussed in a short final remarks.

열가소성 탄성체(thermoplastic elastomer, TPE)는 학술적 기초 및 응용은 물론이고 산업적, 상업적으로 매우 중요한 유기 소재의 하나이다. TPE는 블록 공중합체뿐만 아니라 많은 다른 고분자분야에서도 중요한 한 영역으로 생각할 수 있다. 가황 고무가 갖고 있는 성질과 열가소성 플라스틱이 보이는 성질을 동시에 갖고 있기 때문이다. 또한 블록과 그라프트 공중합체, 이들 혼합물, 가황 물질에서 비롯된 일련의 성질을 보여주기 때문이다. 이 소재의 중요성은 출판되는 간행물(논문, 특허, 보고서 등)의 수에서도 알 수 있다. 'thermoplastic elastomer'를 키워드로, 열가소성 탄성체의 개념이 들어간 간행물의 숫자를 SciFinderScholar를 이용하여 조사한 결과, 1939년 ~ 2010년 7월 10일 사이에 18,508편에 이르렀으며, 특히 1990년 중반부터 그 숫자가 기하급수적으로 늘었다. 열가소성 플라스틱의 성질과 가교탄성체의 성질을 동시에 갖고 있는 TPE의 영역을 설명할 때 과학적, 기술적, 상업적인 관점을 모두 고려해야 한다. 본 보문에서는 TPE의 역사적인 관점을 먼저 설명하고, 화학적, 구조적 및 모폴러지 연구 동향을 다루고자 한다. 또한 주요 제조법과 현대적 분석 기술을 다룰 것이다. 이어 TPE의 성질과 가공성, 유기소재 사이에서의 입지와 응용에 대해도 분석한 후, 향후의 발전 방향에 대하여 논의하고자 한다.

Keywords

References

  1. C. P. Rader, "Thermoplastic elastomers", in Elastomer Technology– Compounding and Testing for Performance (Ed. J. Dick), Hanser Publ., 2001, Ch.10, pp. 264–283.
  2. R. E. Christ and W. E. Hanford, "Treatment of polyesters such as those for sheets or coatings", US patent 2,333,639, du Pont de Nemours & Co., 1943.
  3. M. D. Snyder, "Elastic linear copolyesters", US patent 2,623,031, du Pont de Nemours & Co., 1952.
  4. C. S. Schollenberger, "Simulated vulcanisates of polyurethane elastomers", US patent 2,871,218, B F Goodrich, 1959.
  5. M. Szwarc, M. Levy, and R. Milkovich, "Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers", J. Am. Chem. Soc., 78, 2656 (1956). https://doi.org/10.1021/ja01592a101
  6. M. Szwarc, "Living polymers", Nature, 178, 1168 (1956). https://doi.org/10.1038/1781168a0
  7. J. T. Bailey, E. T. Bishop, W. R. Hendricks, G. Holden, and N. R. Legge, "Thermoplastic elastomers. Physical properties and applications", Rubber Age, 98, 69 (1966).
  8. G. Holden, E. T. Bishop, and N. R. Legge, "Thermoplastic elastomers", J. Polym. Sci. Part C: Polym. Symp., 26, 37 (1969).
  9. A. V. Tobolsky, "Trends in rubber research", Rubber World, 139, 857 (1959).
  10. E. G. Kontos, E. K. Easterbrook, and R. D. Gilbert, "Block copolymers of $\alpha$-olefins prepared from macromolecules with long-chain lifetimes", J. Polym. Sci, 61, 69 (1962). https://doi.org/10.1002/pol.1962.1206117111
  11. E. Muller, S. Petersen, and O. Bayer, German patent 76,584, IG Farben, 1944.
  12. O. Bayer, E. Muller, S. Petersen, H. F. Piepenbrink, and E. Windemuth, "Polyurethanes. VI. New highly elastic synthesis. Vulcollans", Angew. Chem., 62, 57 (1950). https://doi.org/10.1002/ange.19500620302
  13. C. S. Schollenberger, H. Scott, and G. R. Moore, "Polyurethan VC, a virtually crosslinked elastomer", Rubber World, 137, 549 (1958).
  14. A. T. Chen, R. G. Nelb II, and K. Onder, "New high-temperature thermoplastic elastomers", Rubber Chem. Technol., 59, 615 (1986). https://doi.org/10.5254/1.3538223
  15. G. Deleens, P. Foy, and E. Marechal, "Synthese et caracterisation de copolycondensats sequences polyamide-seq-ether)", Eur. Polym. J., 13, 353 (1977) and references therein. https://doi.org/10.1016/0014-3057(77)90094-5
  16. J. C. Shivers, Jr, "Linear elastic copolymers", US patent 3,023,192, du Pont de Nemours, 1962.
  17. A. Y. Coran and R. P. Patel, "Thermoplastic elastomers based on dynamically vulcanized elastomer-thermoplastic blends" in Thermoplastic Elastomers (Eds. G. Holden, N. R. Legge, R. P. Quirk, and H. E. Schroeder), Hanser/Garner Publications, Munich, Vienna, New York, 1996, Ch. 7, p. 153.
  18. E. Marechal, "Block copolymers with polyethers as flexible blocks; Future trendsin block copolymers", in Block Copolymers (Eds. F. J. B. Calleja and Z. Roslianec), Marcel Dekker, 2000, pp. 29–541.
  19. D. T. Williamson, J. R. Lizotte, and T. E. Long, "Facile living anionic polymerization processes: new monomers and polymer architectures containing 1,3-cyclohexadiene without a high vacuum line", Polym. Mater. Sci. Eng., 84, 837 (2001).
  20. D. G. Barrett and M. N. Yousaf, "Design and Applications of Biodegradable Polyester Tissue Scaffolds Based on Endogenous Monomers Found in Human Metabolis", Molecules, 14, 4022 (2009). https://doi.org/10.3390/molecules14104022
  21. J. P. Kennedy, "Living cationic polymerization of olefins", How did the discovery come about?, J. Polym. Sci. PartA: Polym. Chem., 37, 2285 (1999). https://doi.org/10.1002/(SICI)1099-0518(19990715)37:14<2285::AID-POLA1>3.0.CO;2-P
  22. X. Cao, L. Sipos, and R. Faust, "Polyisobutylene based thermoplastic elastomers: VI. Poly($\alpha$-methylstyrene-b-isobutylene-b-$\alpha$-methylstyrene) triblock copolymers by coupling of living poly ($\alpha$-methylstyrene-b-isobutylene) diblockcopolymers", Polym. Bull., 45, 121 (2000). https://doi.org/10.1007/s002890070039
  23. J. Feldthusen, I. Bela, and A. H. E. Mueller, "Synthesis of linear and star-shaped block copolymers of isobutylene and methacrylates by combination of living cationic and anionic polymerizations", Macromolecules, 31, 578 (1998). https://doi.org/10.1021/ma971174c
  24. B. Ameduri, B. Boutevin, and P. Gramain, "Synthesis of block copolymers by radical polymerization and telomerization", Adv. Polym. Sci., 127, 87 (1997). https://doi.org/10.1007/BFb0103630
  25. K. Matyjaszewski, "Environmental aspects of controlled radical polymerization", Macromol. Symp., 152, 29 (2000). https://doi.org/10.1002/1521-3900(200003)152:1<29::AID-MASY29>3.0.CO;2-C
  26. A. Nese, J. Mosnacek, A. Juhari, J. A. Yoon, K. Koynov, T. Kowalewski, and K. Matyjaszewski, "Synthesis, Characterization, and Properties of Starlike Poly(n-butyl acrylate)-b-poly(methyl methacrylate) Block Copolymers", Macromolecules, 43, 1227 (2010). https://doi.org/10.1021/ma902447p
  27. S. Fakirov, "Handbook of Condensation Thermoplastic Elastomer", Wiley-VCH Verlag GmbH & Co. KGaA, 2005.
  28. H. Ding and F. W. Harris, "Synthesis and characterization of a novel nylon 6-bpolyimide-b-nylon 6 copolymers", Pure. Appl. Chem., 67, 1997 (1995). https://doi.org/10.1351/pac199567121997
  29. T. Yokozawa, M. Ogawa, A. Sekino, R. Sugi, and A. Yokoyama, "Synthesis of well defined poly(p-benzamide) from chain-growth polycondensation and its application to block copolymers", Macromol. Symp., 199, 187 (2003). https://doi.org/10.1002/masy.200350916
  30. H. R. Kricheldorf, T. Wollheim, V. Altstadt, C. E. Koning and G. M. W. Buning, "Thermoplastic elastomers", Polymer, 42, 6699 (2001). https://doi.org/10.1016/S0032-3861(01)00151-3
  31. P. J Madec and E. Marechal, "Block copolymers by polycondensation of $\alpha$,$\omega$-difunctional-oligomers", Prace Naujowe Polytechniki Szczecinskiej, 514, 11 (1994).
  32. S. G. Gaynor, P. Balchandhani, A. Kulfan, M. Podwika, and K. Matyjaszewski, "Architectural control in acrylic polymers by atom transfer radical polymerization", Abstract of the 213th ACS Natl. Meet., San Francisco, CA, USA, Poly-340, 1997.
  33. M. Baumert, J. Heinemann, R. Thomann, and R. Mulhaupt, "Highly branched polyethylene graft copolymers prepared by means of migratory insertion polymerization combined with TEMPO-mediated controlled radical polymerization", Macromol. Rapid Commun., 21, 271 (2000). https://doi.org/10.1002/(SICI)1521-3927(20000301)21:6<271::AID-MARC271>3.0.CO;2-N
  34. G. H. Hofmann, "Thermoplastic elastomers based on halogen- containing polyolefins", in Thermoplastic Elastomers (Eds. G. Holden, N. R. Legge, R. P. Quirk, and H. E. Schroeder), Hanser/Garner Publications, Munich, Vienna, New York, 1996, Ch. 6, p. 129.
  35. A. K. Jain, A. K. Nagpal, R. Singhal and N. K. Gupta, "Effect of dynamic crosslinking on impact strength and other mechanical properties of polypropylene/ethylene propylene diene rubber blends", J. Appl. Polym. Sci., 78, 2089 (2000). https://doi.org/10.1002/1097-4628(20001213)78:12<2089::AID-APP50>3.0.CO;2-H
  36. H. Pash, "Liquid chromatography at the critical point of adsorption –A new technique for polymer characterization", Macromol. Symp., 110, 107 (1996). https://doi.org/10.1002/masy.19961100110
  37. P. Kilz, R. P. Kruger, H. Much, and G. Schulz, "2-Dimensional chromatography for the deformulation of complex copolymers", Adv. Chem., 247, 223 (1995). https://doi.org/10.1021/ba-1995-0247.ch017
  38. N. Aust and G. Gobec, "Size exclusion chromatography as a method routine checkup and quality control of industrial thermoplastic polyurethane systems–correlation between molecular weight and mechanical and thermal properties", Macromol. Mater. Eng., 286, 119 (2001). https://doi.org/10.1002/1439-2054(20010201)286:2<119::AID-MAME119>3.0.CO;2-P
  39. B. R. Nair, V. G. Gregoriou, and P. T. Hammond, "FT-IR studies of side chain liquid crystalline thermoplastic elastomers", Polymer, 41, 2961 (2000). https://doi.org/10.1016/S0032-3861(99)00453-X
  40. H. Wang, D. K. Graff, J. R. Schoonover, and R. A. Palmer, "Static and dynamic infrared linear dichroic study of polyester/ polyurethane copolymer using step-scan FT-IR and photoelastic modulator", Appl. Spectr., 53, 687 (1999). https://doi.org/10.1366/0003702991947126
  41. A. Boulares, L. Rozes, M. Tessier, and E. Marechal, "Synthesis and characterization of poly(copolyethers-b-polyamides). I. Structural study of polyether precursors", J. Macromol. Sci–Pure. Appl. Chem., A35, 933 (1998).
  42. E. M. Frick and M. A. Hillmeyer, "Morphological, rheological and mechanical characterization of polylactide-b-polyisopreneb-polylactidetriblock copolymers: New partially biodegradable thermoplastic elastomers", Polym. Mat. Sci. Eng., 87, 110 (2002).
  43. P. Stepanek and T. P. Lodge, "Dynamic light scattering from block copolymers", NATO. ASI. Series, Ser. 3: High Technology, 40, 189 (1997).
  44. Q. Guo, P. Figueiredo, R. Thomann, and W. Gronski, "Phase behavior, morphology and interfacial structure in thermoset/ thermoplastic elastomer blends of poly(propylene glycol)- type epoxy resin and polystyrene-b-polybutadiene", Polymer, 42, 10101 (2001). https://doi.org/10.1016/S0032-3861(01)00562-6
  45. H. Veenstra, R. M. Hoogvliet, B. Norder, and A. P. De Boer, "Microphase separation and rheology of a semicrystalline poly(ether-ester) multiblock copolymer", J. Polym. Sci. Part B: Polym. Phys., 36, 1795 (1998). https://doi.org/10.1002/(SICI)1099-0488(199808)36:11<1795::AID-POLB1>3.0.CO;2-Q
  46. S. Muramatsu and J. B. Lando, "Reversible crystal deformation of poly(tetramethylene terephthalate) segments in semicrystalline segmented poly(ether-ester) thermoplastic elastomers", Macromolecules, 31, 1866 (1998). https://doi.org/10.1021/ma9701999
  47. J. Chen, J. Zhang, T. Zhu, Z. Hua, Q. Chen, and X. Yu, "Blends of thermoplastic polyurethane and polyether-polyimide: preparation and properties", Polymer, 42, 1493 (2000).
  48. M. J. Park and K. Char, "Gelation of PEO-PLGA-PEO triblock copolymers induced by macroscopic phase separation", Langmuir, 20, 2456 (2004). https://doi.org/10.1021/la035573e
  49. M. D. Foster, M. Sikka, N. Singh, F. S. Bates, S. K. Satija, and C. F. Majkrzak, "Structure of symmetric polyolefin block copolymer thin films", J. Chem. Phys., 96, 8605 (1992). https://doi.org/10.1063/1.462263
  50. F-j. Huang and T-l. Wang, "Synthesis and characterization of new segmented polyurethanes with side-chain, liquid-crystalline chain extenders", J. Polym. Sci. Part A: Polym. Chem. Ed., 42, 290 (2003).
  51. P. Svodoba, H. Saito, T. Chiba, T. Inoue, and Y. Takemura, "Morphology and elastomeric properties of isotactic polypropylene/ hydrogenated polybutadiene blends", Polym. J., 32, 915 (2000). https://doi.org/10.1295/polymj.32.915
  52. G. Sundararajan, V. Vasudevan, and K. A. Reddy, "Synthesis of triblock copolymers-(polyA-polybutadiene-polyA) via metathesis polymerization", J. Polym. Sci. Part A: Polym. Chem. Ed., 36, 2601 (1998). https://doi.org/10.1002/(SICI)1099-0518(199810)36:14<2601::AID-POLA20>3.0.CO;2-L
  53. S. Anandhan, P. P. De, S. K. De, and A. K. Bhowmick, "Thermoplastic elastomeric blend of nitrile rubber and poly(styrene- co-acrylonitrile).I. Effect of mixing sequence and dynamic vulcanization on mechanical properties complexes", J. Appl. Polym. Sci, 88, 1976 (2003). https://doi.org/10.1002/app.11893
  54. S. S. Pesestkii, B. Jurkowski, Y. A. Olkhov, O. M. Olkhova, I. P. Storozhuk, and U. M. Mozheiko, "Molecular and topological structures in polyester block copolymers", Eur. Polym. J., 37, 2187 (2001). https://doi.org/10.1016/S0014-3057(01)00120-3
  55. P. P. C. G. Martin, M. Van Duin, and M. Van Gurp, "Process for making thermoplastic composition comprising dynamic crosslinking", PCT Int. Appl. WO 099927, to DSM Ip Assets B V Neth, 2003.
  56. S. P. Sutton, "Molding of thermoplastic elastomer compositions and heating apparatus for the process", US patent 193,116, 2003.
  57. M. Tasaka and T. Suka, "Thermoplastic elastomer compositions with good flowability for powder molding and their powders", Jpn. Kokai Tokkyo Koho JP 246,887, to Riken Technos Corporation, Japan, 2003.
  58. Q. Zhang, A. G. MacDiarmid, J. Su, Wang P-C, and K. J. Wynne, "Polymeric electrostrictive Systems", PCT Int. Appl. WO 9,917,929, to the trustees of Uni Pennsylvania, 1999.
  59. K. D. Ziegel, "Gas transport in segmented block copolymers", J. Macromol. Sci. Phys., B5, 11 (1971).
  60. S. Auguste and N. Desmaison, "Solid emulsions based on thermoplastic elastomers for medical goods and cosmetics", PCT Int. Appl. WO 087,220, to Laboratoires Ugo, 2003.
  61. A. Steinbuchel A and B. Fuchtenbusch, "Bacterial and other biological systems for polyester production", Trends. Biotech., 16, 419 (1998). https://doi.org/10.1016/S0167-7799(98)01194-9
  62. W. Klingensmith, T. Dendringer, A. McConnell, P. Standley, J. Beckett,R. Eller, C. Otterstedt, and J. Walker, "Elastomers for automotive applications, in Elastomer Technology: Special Topics (Eds. K. C. Baranwal and H. L. Stephens)", ACS Rubber Division, Akron, Ohio, 2003, pp. 455–91.
  63. B. G. G. Lohmeijer and U. S. Schubert U S, "Playing LEGO with macromolecules: Design, synthesis, and self-organization with metal complexes", J. Polym. Sci. Part A: Polym. Chem. Ed., 41, 1413 (2003). https://doi.org/10.1002/pola.10685
  64. T. Yokozawa and A. Yokoyama, "Chain-growth polycondensation: polymerization nature in polycondensation and approach to condensation polymer architecture", Polym. J., 36, 65 (2004). https://doi.org/10.1295/polymj.36.65
  65. T. Lalot and E. Marechal, "Enzyme-catalyzed polyester synthesis", Int. J. Polym. Mater., 50, 267 (2001). https://doi.org/10.1080/00914030108035107
  66. B. Hazer, "Amphiphilic poly(3-hydroxy alkanoate)s: potential candidates for medical applications", Energy & Power Eng., 31 (2010).
  67. B. R. Nair, V. G. Gregoriou, and P.T. Hammond, "FT-IR studies of side chain liquid crystalline elastomers", Polymer, 41, 2961 (2000). https://doi.org/10.1016/S0032-3861(99)00453-X
  68. P. Antony, J. E. Puskas, and C. Paulo, "Arborescent polyolefinic thermoplastic elastomers and products therefrom", PCT Int. Appl. WO 096,967, to the authors and the Uni Western Ontario, Canada, 2002.
  69. H. Koerner, G. Price, N. A. Pearce, M. Alexander, and R. A. Vaia, "Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers", Nature Mater., 3, 115 (2004). https://doi.org/10.1038/nmat1059