• Title/Summary/Keyword: Chemical Sensors

Search Result 596, Processing Time 0.028 seconds

Strain-free AlGaN/GaN Nanowires for UV Sensor Applications (Strain-free AlGaN/GaN 자외선 센서용 나노선 소자 연구)

  • Ahn, Jaehui;Kim, Jihyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.72-75
    • /
    • 2012
  • In our experiments, strain-free nanowires(NWs) were dispersed on to the substrate, followed by e-beam lithography(EBL) to fabricate single nanowire ultraviolet(UV) sensor devices. Focused-ion beam(FIB), micro-Raman spectroscopy and photoluminescence were employed to characterize the structural and optical properties of AlGaN/GaN NWs. Also, I-V characteristics were obtained under both dark condition and UV lamp to demonstrate AlGaN/GaN NW-based UV sensors. The conductance of a single AlGaN/GaN UV sensor was 9.0 ${\mu}S$(under dark condition) and 9.5 ${\mu}S$ (under UV lamp), respectively. The currents were enhanced by excess carriers under UV lamp. Fast saturation and decay time were demonstrated by the cycled processes between UV lamp and dark condition. Therefore, we believe that AlGaN/GaN NWs have a great potential for UV sensor applications.

TiO2-SiO2 Nanocomposite Fibers Prepared by Electrospinning of Ti-PCS Mixed Solution (Ti-PCS 혼합용액의 전기방사를 통해 제조된 TiO2-SiO2 나노복합 섬유)

  • Shin, Dong-Geun;Jin, Eun-Ju;Lee, Yoon-Joo;Kwon, Woo-Tek;Kim, Younghee;Kim, Soo-Ryong;Riu, Doh-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.276-281
    • /
    • 2015
  • Nanostructured $TiO_2-SiO_2$ materials have widely been used as anti-reflecting coating, optical-chemical sensors and catalysts because of their superior optical and thermal properties as well as chemical durability. Web type $SiO_2$ microfibers with nano-crystalline $TiO_2$ were prepared by electrospinning of Ti-PCS mixed solution and oxidation controlled heat-treatment, rather simple than sol-gel process. Nano-crystalline anatase phase were formed for the heat-treatment up to $1200^{\circ}C$ and they were finely dispersed in the amorphous $SiO_2$ matrix.

Recent research trend of supercapacitor and chemical sensor using composite of ZIF-8 and carbon-based material (ZIF-8과 탄소기반물질 복합체를 이용한 슈퍼커패시터 및 화학센서의 최신연구동향)

  • Kim, Sang Jun;Lee, Jae Min;Jo, Seung Geun;Lee, Eun Been;Lee, Seoung-Ki;Lee, Jung Woo
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.51-62
    • /
    • 2022
  • Metal-organic framework (MOF) is one of the representative porous materials composed of metal ions and organic linkers. In spite of many advantages of the MOFs such as high specific surface area and ease of structure control, drawbacks have become obstacles to the practical use of them with poor electrical conductivity and chemical stability. The ZIF-8, which is consisted of zinc and imidazole linker, is one of the solutions to improve the chemical stability issue. In addition, composites using the ZIF-8 and carbonbased materials are widely used to enhance the electrical conductivity. In this regard, supercapacitor is very attractive field for using the composites, because most of carbon-based materials are porous and conductive. Also, for sensor applications, the ZIF-8 composite is suitable material to meet the requirement in terms of the selectivity and sensitivity. This review summarizes recent progress of the composite materials with the ZIF-8 and the carbon-based materials for the supercapacitors and the chemical sensors. In particular, the composites are classified into ZIF-8-graphene, ZIF-8-carbon nanotube and ZIF-8-other carbon-based material.

Fabrication of Poly(methyl methacrylate) Beads Monolayer Using Rod-coater and Effects of Solvents, Surfactants and Plasma Treatment on Monolayer Structure (Rod 코팅을 이용한 Poly(methyl methacrylate) 비드의 단일층 형성 및 단일층 구조에 미치는 용매, 계면활성제, 플라즈마 처리의 영향)

  • Kim, Da Hye;Ham, Dong Seok;Lee, Jae-Heung;Huh, Kang Moo;Cho, Seong-Keun
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Fabrication of monolayer is important method for enhancing physical and chemical characteristics such as light shielding and antireflection while maintaining thin film properties. In previous studies, monolayers were fabricated by various methods on small substrates, but processes were complicated and difficult to form monolayers with large area. We used rod coating equipment with a small amount of coating liquid to form a HCP (hexagonal closed packing) coating of PMMA beads on PET(poly(ethylene terephthalate)) substrate with $20cm{\times}20cm$ size. We observed that changes in morphologies of monolayers by using the solvents with different boiling points and vapor pressures, by adapting surfactants on particles and by applying plasma treatment on substrates. The coverage was increased by 20% by optimizing the coating conditions including meniscus of beads, control of the attraction - repulsion forces and surface energy. This result can potentially be applied to optical films and sensors because it is possible to make a uniform and large-scale monolayer in a simple and rapid manner when it is compared to the methods in previous studies.

Salphen H2 as a Neutral Carrier for the Uranyl Ion-Selective PVC Membrane Sensor

  • Kim, Dong-Wan;Park, Kyeong-Won;Yang, Mi-Hyi;Kim, Jin-eun;Lee, Shim-Sung;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.899-902
    • /
    • 2006
  • The complexation of N,N'-4,5-(ethylenedioxy)benzenebis(salicylideneimine), (salphen$H_2$) with uranyl ion was studied in acetonitrile solution spectrophtometrically, and the formation constant of the resulting 1 : 1 complex was evaluated. The salphen$H_2$ ligand was used as an ionophore in plasticized poly(vinyl chloride) (PVC) matrix membrane sensor for uranyl ion. The prepared sensors exhibited a near Nernstian response, 28.0-30.9 mV/decade for uranyl ion over the concentration range $1.0\;{\times}\;10^{-2}$ to $1.0\;{\times}\;10^{-6}$M with a limit of detection of $3.2\;{\times}\;10^{-7}$ M. The proposed electrode could be used at a working pH range of 1.5 - 4.0.

Fabrication and Thermal Oxidation of ZnO Nanofibers Prepared via Electrospinning Technique

  • Baek, Jeong-Ha;Park, Ju-Yun;Kang, Ji-Soo;Kim, Don;Koh, Sung-Wi;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2694-2698
    • /
    • 2012
  • Materials on the scale of nanoscale have widely been used as research topics because of their interesting characteristics and aspects they bring into the field. Out of the many metal oxides, zinc oxide (ZnO) was chosen to be fabricated as nanofibers using the electrospinning method for potential uses of solar cells and sensors. After ZnO nanofibers were obtained, calcination temperature effects on the ZnO nanofibers were studied and reported here. The results of scanning electron microscopy (SEM) revealed that the aggregation of the ZnO nanofibers progressed by calcination. X-ray diffraction (XRD) study showed the hcp ZnO structure was enhanced by calcination at 873 and 1173 K. Transmission electron microscopy (TEM) confirmed the crystallinity of the calcined ZnO nanofibers. X-ray photoelectron spectroscopy (XPS) verified the thermal oxidation of Zn species by calcination in the nanofibers. These techniques have helped us deduce the facts that the diameter of ZnO increases as the calcination temperature was raised; the process of calcination affects the crystallinity of ZnO nanofibers, and the thermal oxidation of Zn species was observed as the calcination temperature was raised.

Copper(II) Selective PVC Membrane Electrodes Based on Schiff base 1,2-Bis (E-2-hydroxy benzylidene amino)anthracene-9,10-dione Complex as an Ionophore

  • Jeong, Eun-Seon;Lee, Hyo-Kyoung;Ahmed, Mohammad Shamsuddin;Seo, Hyung-Ran;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.401-405
    • /
    • 2010
  • The Schiff base 1,2-bis(E-2-hydroxy benzylidene amino)anthracene-9,10-dione has been synthesized and explored as ionophore for preparing PVC-based membrane sensors selective to the copper ($Cu^{2+}$) ion. Potentiometric investigations indicate high affinity of these receptors for copper ion. The best performance was shown by the membrane of composition (w/w) of ionophore: 1 mg, PVC: 33 mg, DOP: 66 mg and KTpClPB as additive were added 50 mol % relative to the ionophore in 1 ml THF. The proposed sensor's detection limit is $2.8{\times}10^{-7}$ M over pH 5 at room temperature (Nernstian slope 31.76 mV/dec.) with a response time of 15 seconds and showed good selectivity to copper ion over a number of interfering cations.

A facile one-pot solution-phase route to synthesizing anovel composite hierarchical hollow structure: W18O49/WO2 Hollow Nanourchins

  • Jeon, Seong-Ho;Yong, Gi-Jung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.33.1-33.1
    • /
    • 2009
  • To date, nanostructured tungsten oxides with a variety of stoichiometries, such as WO3, WO2.9, W18O49, and WO2, have been prepared, because they are promising candidates for applications such as gas sensors, photocatalysts, electrochromic devices, and field emission devices. Among them, W18O49 and WO2 have been widely studied due to their outstanding chemical sensing, catalytic, and electron emissive properties. Here we report, for the first time, a one-pot solution-phase route to synthesizing a novel composite hierarchical hollow structure without adding catalysts, surfactants, or templates. The products, consisting of a WO2 hollow core sphere surrounded by a W18O49 nanorod shell (yielding a sea urchin-like structure), were generated as discrete structures via Ostwald ripening. To our knowledge, this type of composite hierarchical core/shell structure has not been reported previously. The morphological evolution and the detailed growth mechanism were carefully studied. We also demonstrate that the size of the hollow urchins is readily tunable by controlling the reactant concentrations.Interestingly, although bulk tungsten oxides are weakly paramagnetic or diamagnetic, the as-prepared products show unusual ferromagnetic behavior atroom temperature. The urchin structures also show a very high Brunauer-Emmet-Teller (BET) surface area, suggesting that they may potentially be applied to chemical sensor or effective catalyst technologies.

  • PDF

Sensor system of flowing cell (세포 흐름 감지 시스템)

  • Kwon, Ki-Jin;Kim, Min-Soo;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.41-46
    • /
    • 1995
  • Sensor system which can detect a flowing cell is designed and fabricated by semiconductor processing and EDM(Electro-chemical Discharge drilling Method). Two methods are used in this paper; 1) optical method which measures the trasmitted light through the cell passage between transmitter and receiver, 2) impedance method which measures impedance change between electrodes, when cell flows in the cell passage. Experimental result using tabaco leaves shows that the ouput value by optical method is 0.2V to 0.7V, and the output by impedance method is 0.2V to 2V, which is bigger, but it includes an avoidable noises.

  • PDF

Thickness Dependence of Solution Deposited HfOx Sensing Membrane for Electrolyte-Insulator-Semiconductor (EIS) Structures (용액 공정으로 증착된 HfOx 감지막을 갖는 Electrolyte-Insulator-Semiconductor 소자의 두께 의존성)

  • Lee, In-Kyu;Cho, Won-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.233-237
    • /
    • 2013
  • We fabricated electrolyte-insulator-semiconductor (EIS) devices using a solution process and measured the sensing properties of EIS devices according to the thicknesses of sensing membrane. For high pH sensitivity and better stability properties, we used $SiO_2/HfO_x$ (OH) layer as a sensing membrane. In this work, $HfO_x$ sensing membranes were deposited on 5 nm thick $SiO_2$ buffer layer by spin coater with thicknesses of 15, 31, 42, 55 nm, respectively. As a result, we founded that the thickness of $HfO_x$ sensing membrane affects to sensitivity and chemical stability of EIS device. Especially, the EIS device with 42 nm thick $HfO_x$ membrane showed superior sensing ability in terms of pH-sensitivity, linearity, hysteresis voltage and drift rate characteristics than the other devices. In conclusion, we confirmed that it is possible to improve the sensing ability and the chemical stability properties using optimized thickness of sensing membrane and proper annealing process.