• Title/Summary/Keyword: Chemical Properties

Search Result 14,430, Processing Time 0.055 seconds

Effects of Feed Containing Citrus Byproducts on the Physio-chemical Characteristics and Palatability of Korean Native Chickens (토종닭 고기의 이화학적 특성 및 기호성에 미치는 감귤 부산물 급여의 영향)

  • Jung, In-Chul;Yang, Jong-Beom;Moon, Yoon-Hee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.4
    • /
    • pp.524-530
    • /
    • 2008
  • In this study, the effects of feed containing citrus byproducts on the physicochemical characteristics and palatability of Korean native chickens were investigated. The Korean native chickens used in this study were divided into two groups: T0 (chickens that were not fed citrus byproducts until they were 39 weeks old) and T1 (chickens that were fed citrus byproducts). The feed given to the T1 chickens was the same as that given to the T0 chickens for the first 16 weeks. Between weeks $17{\sim}39$, the feed given to the T1 chickens was prepared by adding 4% of the citrus byproducts to the feed given to the T0 chickens. The chickens used in the experiment were chilled for 2 days after being sacrificed. The feed containing citrus byproducts did not cause any statistically significant differences in the breast and thigh characteristics of lightness ($L^*$ value), redness ($a^*$ value), yellowness ($b^*$ value), water-holding capacity, frozen loss, thawing loss and boiling loss. As for the rheological properties, there was no statistically meaningful difference in the breast/thigh characteristics of springiness, cohesiveness, gumminess, and chewiness between the T0 and T1 chickens. However, hardness and shear force were significantly lower in the T1 chickens than in the T0 chickens (p<0.05). The acid and peroxide values were also lower in the T1 chickens than in the T0 chickens, but the difference was not statistically significant. Antioxidant activity was better in the T1 chickens than in the T0 chickens. Thus, the results of the present study show that consumption of citrus byproducts did not affect the color and smell of raw meat. The palatability of boiled meat was significantly better in the T1 chickens than in the T0 chickens.

  • PDF

Temporal and Spatial Variations of Particulate Organic Matter in the Southeastern Coastal Bays of Korea (한반도 남동 연안내만 입자유기물질의 시$\cdot$공간 변동 특성)

  • LEE Pil-Yong;KANG Chang-Keun;CHOI Woo-Jeung;LEE Won-Chan;YANG Han-Soeb
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.1
    • /
    • pp.57-69
    • /
    • 2001
  • The chemical, elemental and biochemical components of the suspended particulate matter (SPM) were investigated in order to quantify particulate organic matter (POM) and assess diet quality for suspension feeders in the southern coastal bay systems of Korea where the marine farming of the suspension feeders are most active, The intense field observation program was carried out seasonally in the three coastal bay systems of Chinhae, Gosung and Kangjin bays, The SPM was characterized as collective properties of organic carbon (POC), nitrogen (PON), phosphorus (PP) and more refined collective properties of protein (PPr), carbohydrate (PCHO) and chlorophyll a (Chl a) compound. Although the three coastal bays are regarded as phytoplankton based ecosystem, the SPM is not composed entirely with phytoplankton cells. Due to the shallow water depth, resuspension of bottom sediment contributes significantly to some of the regions. Therefore, concentration of SPM in the surface water did not co-vary with Chl a or PPr, PCHO. In general, temporal variation of POC, PON and Chl a contents in seawater were closely associated with phytoplankton biomass in the three coastal bays, However, PPr and PCHO contents in seawater were higher in Chinhae bay than in Gosung and Kangjin bays and Chl a PPr-N ratio was higher in Chinhae bay than in Kosung and Kangjin bays, since Chinhae bay is more eutrophicated than other bays. Average C : N ratios from regressions of POC and PON of SPM were 6.6, 6.6 and 5.0 in Chinhae, Gosung and Kangjin bays, respectively. SPM in Chinhae and Gosung bays appears to be made of largely phytoplankton cells and SPM in Kangjin bay appears to be contributed from the bacterial biomass due to the shallow water depth. N : P ratios from regressions of PON and PP of SPM were 10.8 and 14.7 in spring, and 18.2 and 24.6 in Chinhae and Gosung bays, respectively. With respect to the hypothetical Redfield molecule, phytoplankton appears to be limited by the lack of N and f in spring and summer, respectively, in the two bays, In Kangjin bay, N : P ratios from regressions of PON and PP of SPM were varied from 6.3 to 12.8 throughout the year. The low N : P ratio with resepct to the hypothetical Redfield molecule, phytoplankton growth appears to be limited by the lack of N-nutrients.

  • PDF

Taxonomical Classification and Genesis of Donggui Series in Jeju Island (제주도 토양인 동귀통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Keun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol;Kang, Ho-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • This study was conducted to reclassify Donggui series based on the second edition of Soil Taxonomy and to discuss the formation of Donggui series in Jeju Island. Morphological properties of typifying pedon of Donggui series were investigated and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon has very dark grayish brown (10YR 3/2) silt loam A horizon (0~17 cm), gravelly very dark grayish brown (10YR 3/2) silt loam BA horizon (17~42 cm), gravelly very dark grayish brown (10YR 3/2) silty clay loam Bt1 horizon (43~80 cm), brown (7.5YR 4/6) silty clay Bt2 horizon (80~105 cm), and brown (10YR 5/4) silty clay Bt3 horizon (105~150 cm). It is developed in lava plain and are derived from basalt and pyroclastic materials. The typifying pedon contains 1.3~2.1% oxalate extractable (Al + 1/2 Fe), less than 85% phosphate retention, and higher bulk density than 0.90 $Mg/m^3$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 22 to 150 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol and Inceptisol. It has udic soil moisture regime, and can be classified as Udalf. Also that meets the requirements of Typic Hapludalf. It has 18-35% clay at the particle-size control section, and have thermic soil temperature regime. Therefore Donggui series can be classified as fine loamy, mixed, thermic family of Typic Hapludalfs, not as fine silty, mixed, thermic family of Dystric Eutrudepts.

Taxonomical Classification and Genesis of Anryong Series Distributed on Mountain Foot Slope (산록경사지 토양인 안룡통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Zhang, Yong-Seon;Park, Chan-Won;Jang, Byoung-Choon
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • This study was conducted to reclassify Anryong series based on the second edition of Soil Taxonomy and to discuss the formation of Anryong series distributed on the mountain foot slope. Morphological properties of typifying pedon of Anryong series were investigated and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon of Anryong series has brown (7.5YR 4/4) loam Ap horizon (0-22 cm), strong brown (7.5YR 4/6) cobbly clay loam BAt horizon (22-35 cm), strong brown (7.5YR 4/6) cobbly clay loam Bt1 horizon (35-55 cm), reddish brown (5YR 5/4) cobbly clay loam Bt2 horizon (55-82 cm), and brown (7.5YR 5/4) cobbly clay loam Bt3 horizon (82-120 cm). The typifying pedon has an argillic horizon from a depth of 22 to 120 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. It can be classified as Ultisol, not as Alfisol. It has udic soil moisture regime, and can be classified as Udult. Also that meets the requirements of Typic Hapludults. It has 18-35% clay at the particle-size control section, and have mesic soil temperature regime. Therefore Anryong series can be classified as fine loamy, mesic family of Typic Hapludults, not as fine loamy, mesic family of Ultic Hapludalfs. Anryong series occur on mountain foot slope positions in colluvial materials derived from acid and intermediate crystalline rocks. They are developed as Ultisols with clay mineral weathering, translocation of clays to accumulate in an argillic horizon, and leaching of base-forming cations from the profile for relatively long periods under humid and temperate climates in Korea.

Management of Recycled Nutrient Resources using Livestock Waste in Large-Scale Environment-Friendly Agricultural Complex (광역친환경농업단지의 경축순환자원 양분관리)

  • Moon, Young-Hun;Ahn, Byung-Koo;Cheong, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.177-184
    • /
    • 2012
  • This experiment was carried out to investigate soil properties and the requirement of livestock manure compost in a large-scale environment-friendly agricultural complex (EFAC), Gosan, Wanju-gun, Jeonbuk. Total cultivation area of major crops was 2,353 ha. This complex area included different types of environment-friendly cropping sections (402.9ha) and livestock farming including 21,077 Korean beef cattle, 1,099 dairy cow, and 32,993 hog. Amount of livestock waste carried in to Resource Center for Crop and Livestock Farming (RCCLF) was 32 Mg per day and the production of manure compost was 9,600 Mg per year. The manure contained 1.4% total nitrogen (T-N), 2.7% phosphorus as $P_2O_5$, 2.1% potassium as $K_2O$, 0.9% magnesium as MgO, 2.5% calcium as CaO. Amount of compost used in the EFAC was 6,588 Mg per year. Soil pH values in the EFAC were varied as follows: 78.1% of paddy field soil, 58.2% of upland soil, 60.3% of orchard field soil, and 62.1% of greenhouse soil were in proper range. For the content of soil organic matter, 41.7% of paddy field soil, 46.5% of upland soil, 40.5% of orchard field soil, and 81.4% of greenhouse soil were higher than proper range. The content of available phosphorus was mostly higher than proper value on the different fields except upland soil. The contents of exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were also exceeded in the orchard field and greenhouse soils. In addition, microbial population, especially aerobic bacteria, in the EFAC was higher than that in regular farming land.

Effect of Growth and Yield of Wheat, Soil Properties on Leguminous Cover Crops-Wheat Mixtures (두과 피복작물과 밀 혼파 재배 시 밀의 생육과 수량 및 토양특성에 미치는 영향)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Oh, Gye-Jeong;Lee, Hyun-Bok;Kim, Min-Tae;Lee, Yong-Hwan;Kang, Ui-Gum;Kim, Sook-Jin;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.198-203
    • /
    • 2012
  • Leguminous cover crops fix nitrogen from the atmosphere. The objective of this research was carried out to decrease fertilizer amount by cover crops-wheat mixtures cultivation. Field experiment was conducted at upland soil 2008 to 2009. Cover crops were used crimson clover and hairy vetch. Treatments consisted of three wheat-crimson clover (wheat 10 kg + crimson clover 1, 3, $5kg\;10a^{-1}$), wheat-hairy vetch mixture (wheat 10 kg + hairy vetch $2kg\;10a^{-1}$), and wheat - hairy vetch mixture - crimson clover (wheat 10 kg + hairy vetch 2 kg + crimson clover $3kg\;10a^{-1}$). These treatments were divided into no fertilizer and top dressing. The yield of wheat and crimson clover mixtures had no significantly differences compared to wheat only at top dressing plots. Also soil chemical and physical properties were a little bit improved such as OM, $NO_3$-N, and bulk density etc by wheat-crimson clover mixtures. Therefore, we suggested that crimson clover and wheat mixture could be used to reduction of fertilizers amount for environmental friendly wheat production.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

Physical Property Analysis of Composite Electrodes with Different Active Material Sizes and Densities using 3D Structural Modeling (3차원 구조 모델링을 이용한 활물질 입자 크기 및 전극 밀도에 따른 복합 전극 내 물리적 특성 분석)

  • Yang, Seungwon;Park, Joonam;Byun, Seoungwoo;Kim, Nayeon;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.39-46
    • /
    • 2020
  • Composite electrodes for rechargeable batteries generally consist of active material, electric conductor, and polymeric binder. And their composition and distribution within the composite electrode determine the electrochemical activity in the electrochemical systems. However, it is not easy to quantify the physical properties of composite electrodes themselves using conventional experimental analysis tools. So, 3D structural modeling and simulation can be an efficient design tool by looking into the contact areas between particles and electric conductivity within the composite electrode. In this study, while maintaining the composition (LiCoO2 : Super P Li® : Polyvinylidene Fluoride (PVdF) = 93 : 3 : 4 by wt%) and loading level (13 mg cm-2) of the composite electrode, the effects of LiCoO2 size (10 ㎛ and 20 ㎛) and electrode density (2.8 g cm-3, 3.0 g cm-3, 3.2 g cm-3, 3.5 g cm-3, 4.0 g cm-3) on the physical properties are investigated using a GeoDict software. With this tool, the composite electrode can be efficiently designed to optimize the contact area and electric conductivity.

Synthesis of Artificial Zeolite from Fly Ash for Preparing Nursery Bed Soils and the Effects on the Growth of Chinese Cabbage (석탄회(石炭灰)를 이용한 육묘(育苗) 상토용(床土用) 인공(人工) 제올라이트의 제조와 배추 생육에 미치는 효과(效果))

  • Kim, Yong-Woong;Lee, Hyun-Hee;Yoon, Chung-Han;Shin, Bang-Sup;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.95-106
    • /
    • 1998
  • To reduce the environmental contamination and to utilize fly ash massively produced from the coal power plant every year, we synthesized the artificial zeolite using fly ash treated with alkaline, and then analyzed the mineralogical and morphological properties by X-ray, IR, and SEM. The amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed by the fly ash and the artificial zeolite were determined with reaction time, amount of adsorbate used, ion concentrations. The results obtained from the pot experiments packed with the top soil, amended with granulated artificial zeolite which was made by treatment of 4% polyvinylalcohol, showed that CEC of the artificial zeolite was $257.7cmol^+kg^{-1}$, that was almost 36 times greater than that of fly ash. The ratio of $SiO_2/Al_2O_3$ decreased but the amount of Na increased. The physico-chemical properties analyzed by X-ray, IT, and SEM represented that the artificial zeolite synthesized had a similar morphological structure to that of the natural zeolite. The structures of the artificial zeolite had a significantly enlarged surface having a lot of pores, while the fly ash looked like spherical smooth shape with having not pores on the surface. Thus, the artificial zeolite was successfully synthesized. The results of adsorption isotherms of fly ash and artificial zeolite showed that the amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed increased as the equilibrium concentration increased, while $NH_4{^+}$ was strongly adsorbed on the surface of fly ash and artificial zeolite than that of $K^+$. The most distinctive growth of Chinese cabbage was found from the top soil(NPK + soils + 20% of granulated artificial zeolite + 5% of compost). Therefore, we concluded that one of the most effective methods to effectively recycle a fly ash was to make the artificial zeolite as we did in this experiment.

  • PDF

Distribution and Community Structure of Salix Species along the Environmental Gradients in the Nam-River Watershed (남강 유역에서 환경 구배에 따른 버드나무속의 분포와 생태적 지위)

  • Lee, In-Soon;Lee, Pal-Hong;Son, Sung-Gon;Kim, Cheol-Soo;Oh, Kyung-Hwan
    • The Korean Journal of Ecology
    • /
    • v.24 no.5
    • /
    • pp.289-296
    • /
    • 2001
  • Community structure of the Salix and physico-chemical properties of sediment were studied from July to September, 2000 in Nam-River watershed for the purpose of inquiring niche breadth, niche overlap and the environmental factors affecting the distribution of Salix species. Among eleven Salix species, the dominant species was Salix koreensis, while the rests were such order as S. nipponica, S. gracilistyla and S. glandulosa by the relative abundance based on the basal area. Mean values and the ranges of sediment properties such as pH, conductivity, water content, organic matter, total nitrogen, available phosphorus, clay, silt and sand were 5.3∼6.3, 14∼351 μmho/cm, 0.1∼3.4%, 0.5∼7.3%, 0.01∼0.2%, 0.1∼0.4 mg/100 g, 1.7∼22.0%, 0.2∼40.8%, 39.7∼98.0%, respectively. Altitude and annual mean temperature of each site were 20∼620 m and 9.3∼13.0℃, respectively. Niche breadth was estimated by considering the differences of the soil texture as the differences of state of source. S. glandulosa was the broadest at the level of 0.77, while the rests were such order as S. koreensis, S. nipponica were 0.69, 0.54, respectively. The niche overlap showing the level of interspecific competition was the largest as 0.94 between S. purpurea var. japonica and S. purpurea var multinervis, while S. graciliglans and S. purpurea var. japonica 0.92, S. graciliglans and S. purpurea var. multinervis 0.87, respectively. According to the analysis of the correlation between eleven species of Salix and eleven environmental factors, S. gracilistyla showed the negative correlation with conductivity, water content, total nitrogen, clay, silt and annual mean temperature, and showed the positive correlation with total nitrogen, sand and altitude. S. graciliglans showed the negative correlation with conductivity, water content, organic matter, clay, silt and annual mean temperature, and showed the positive correlation with total nitrogen, sand and altitude. S. nipponica showed the negative correlation with sand and altitude, and showed the positive correlation with water content, total nitrogen, clay, silt and annual mean temperature. S. nipponica showed the opposite results of S. gracilistyla. Soil texture, total nitrogen, water content, altitude and annual mean temperature were affecting the distribution of Salix species in Nam-River watershed.

  • PDF