• 제목/요약/키워드: Chemical Mechanical Polishing (CMP)

Search Result 428, Processing Time 0.024 seconds

Effects of Change of Wafer Shape through Heating on Chemical Mechanical Polishing Process (가열에 의한 웨이퍼 형상 변화가 CMP에 미치는 영향)

  • 권대희;김형재;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.85-90
    • /
    • 2003
  • Removal rate and Within Wafer Non-Uniformity (WIWNU), the most critical issues in Chemical Mechanical Polish (CMP) process, are related to the pressure distribution, wafer shape, slurry flow, mechanical property of pad and etc. Among them, wafer warp generated by other various manufacturing process of wafer may induce the deviation of pressure distribution on the backside of wafer. In the convex shaped wafer the pressure onto the backside of wafer is higher than that of perfectly flat shaped wafer. Besides, such an added pressure is in proportion to the curvature of wafer. That is, the bigger the curvature of wafer becomes the higher the removal rate goes. And the WIWNU is known to be directly related to the pressure distribution on the wafer as well. In other words, the deviation of pressure distribution is in proportion to the WIWNU. In this paper, it is found that the wafer shape may be modified through heating the backside of it and thus properly changed pressure onto the backside of it may improve the WIWNU.

X-ray diffraction analysis on sapphire wafers with surface treatments in chemical-mechanical polishing process (사파이어 웨이퍼 연마공정에서의 표면처리효과에 대한 X-선 회절분석)

  • 김근주;고재천
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.5
    • /
    • pp.218-223
    • /
    • 2001
  • The chemical-mechanical polishing process was carried out for 2"-dia. sapphire wafer grown by horizontalBridgman method on the urethane lapping pad with the silica sol. The polished wafer shows the full-width at halfmaximum of 200~400 arcsec in double-crystal X-ray diffraction, indicating that the slicing, grinding and lapping processes before the polishing process affected the crystalline structural property of the wafer surface by the mechanical residual stress. For the inclusion of surface treatments after chemical-mechanical polishing such as the thermal annealing at the temperature of $1,200^{\circ}C$for 4 hrs. and chemical etching, the crystalline quality was sigdicantly enhanced with the reduced full-width at half maximum up to 8.3 arcsec.arcsec.

  • PDF

Chemical Mechanical Polishing Characteristics of BTO Films using $TiO_2$- and $BaTiO_3$-Mixed Abrasive Slurry (MAS) ($BaTiO_3$$TiO_2$ 분말이 혼합된 연마제 슬러리(MAS)를 사용한 BTO 박막의 CMP 특성)

  • Lee, Woo-Sun;Seo, Yong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.6
    • /
    • pp.291-296
    • /
    • 2006
  • In this study, the sputtered BTO film was polished by CMP process with the self-developed $BaTiO_3$- and $TiO_2$-mixed abrasives slurries (MAS), respectively. The removal rate of BTO ($BaTiO_3$) thin film using the $BaTiO_3$-mixed abrasive slurry (BTO-MAS) was higher than that using the $TiO_2$-mixed abrasives slurry ($TiO_2$-MAS) in the same concentrations. The maximum removal rate of BTO thin film was 848 nm/min with an addition of $BaTiO_3$ abrasive at the concentration of 3 wt%. The sufficient within-wafer non-uniformity (WIWNU%) below 5% was obtained in each abrsive at all concentrations. The surface morphology of polished BTO thin film was investigated by atomic force microscopy (AFM).

Fabrication of Silica Nanoparticles by Recycling EMC Waste from Semiconductor Molding Process and Its Application to CMP Slurry (반도체 몰딩 공정에서 발생하는 EMC 폐기물의 재활용을 통한 실리카 나노입자의 제조 및 반도체용 CMP 슬러리로의 응용)

  • Ha-Yeong Kim;Yeon-Ryong Chu;Gyu-Sik Park;Jisu Lim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In this study, EMC(Epoxy molding compound) waste from the semiconductor molding process is recycled and synthesized into silica nanoparticles, which are then applied as abrasive materials contains CMP(Chemical mechanical polishing) slurry. Specifically, silanol precursor is extracted from EMC waste according to the ultra-sonication method, which provides heat and energy, using ammonia solution as an etchant. By employing as-extracted silanol via a facile sol-gel process, uniform silica nanoparticles(e-SiO2, experimentally synthesized SiO2) with a size of ca. 100nm are successfully synthesized. Through physical and chemical analysis, it was confirmed that e-SiO2 has similar properties compared to commercially available SiO2(c-SiO2, commercially SiO2). For practical CMP applications, CMP slurry is prepared using e-SiO2 as an abrasive and tested by polishing a semiconductor chip. As a result, the scratches that are roughly on the surface of the chip are successfully removed and turned into a smooth surface. Hence, the results present a recycling method of EMC waste into silica nanoparticles and the application to high-quality CMP slurry for the polishing process in semiconductor packaging.

The study on removal of slurry particles on W plug generated during tungsten CMP (WCMP에서 발생되는 W plug내 slurry particle제거에 관한 연구)

  • Yang, Chan-Ki;Kwon, Tae-Young;Hong, Yi-Koan;Kang, Young-Jae;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.366-367
    • /
    • 2006
  • In general, HF chemistry lifts off the particles during scrubbing after polishing and effectively removes particles. It is sometimes impossible to apply HF chemistry on W plug due to the degradation of electrical characteristics of a device. In this paper, a post W CMP cleaning process is proposed to remove residue particles without applying HF chemistry. After W CMP, recessed plugs are created, therefore they easily trap slurry particles during CMP process. These particles in recessed plug are not easy to remove by brush scrubbing when $NH_4OH$ chemistry is used for the cleaning because the brush surface can not reach the recessed area of plugs. Buffing with oxide slurry was followed by W CMP due to its high selectivity to W. The buffing polishes only oxide slightly which creates higher plug profiles than surrounding oxide. Higher profiles make the brush contact much more effectively and result in a similar particle removal efficiency even in $NH_4OH$ cleaning to that in HF brush scrubbing.

  • PDF

A study on the global planarization characteristics in end point stage for device wafers (다바이스 웨이퍼의 평탄화와 종점 전후의 평탄화 특성에 관한 연구)

  • 정해도;김호윤
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.12
    • /
    • pp.76-82
    • /
    • 1997
  • Chemical mechanical polishing (CMP) has become widely accepted for the planarization of multi-interconnect structures in semiconductor manufacturing. However, perfect planarization is not so easily ahieved because it depends on the pattern sensitivity, the large number of controllable process parameters, and the absence of a reliable process model, etc. In this paper, we realized the planarization of deposited oxide layers followed by metal (W) polishing as a replacement for tungsten etch-back process for via formation. Atomic force microscope (AFM) is used for the evaluation of pattern topography during CMP. As a result, AFM evaluation is very attractive compared to conventional methods for the measurment of planarity. mOreover, it will contribute to analyze planarization characteristics and establish CMP model.

  • PDF

Electrical and Optical of Properties ITO Thin Film with a Control of Temperature in Pad Conditioning Process (CMP 패드 컨디셔닝 온도조절시 ITO박막의 전기적.광학적 특성 거동)

  • Choi, Gwon-Woo;Kim, Nam-Hoon;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.148-150
    • /
    • 2005
  • Indium tin oxide (ITO) thin film was polished by chemical mechanical polishing (CMP) immediately after pad conditioning with the various conditioning temperatures by control of de-ionized water (DIW). Light transparent efficiency of ITO thin film was improved after CMP process after pad conditioning at the high temperature because the surface morphology was smoother by soften polishing pad and decreased particle size.

  • PDF

Electrical and Optical Properties of ITO Thin Film with a Control of Temperature in Pad Conditioning Process (패드 컨디셔닝 온도 변화가 ITO 박막의 전기적.광학적 특성에 미치는 영향)

  • Choi, Gwon-Woo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.352-353
    • /
    • 2005
  • Indium tin oxide (ITO) thin film was polished by chemical mechanical polishing (CMP) immediately after pad conditioning with the various conditioning temperatures by control of do-ionized water (DIW). Light transparent efficiency of ITO thin film was improved after CMP process after pad conditioning at the high temperature because the surface morphology was smoother by soften polishing pad and decreased particle size.

  • PDF

Study of Several Silica Properties Influence on Sapphire CMP

  • Wang, Haibo;Zhang, Zhongxiang;Lu, Shibin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.886-891
    • /
    • 2018
  • Colloid silica using as abrasive for polishing sapphire has been extensively studied, which mechanism has also been deeply discussed. However, by the requirement of application enlargement and cost reduction, some new problems appear such as silica service life time, particle diameter mixing, etc. In this paper, several influences of colloid silica usage on sapphire CMP are examined. Results show particle diameter and concentration, pH value, service life time, particle diameter mixing heavily influence removal rate. Further analysis discloses there are two main effect aspects which are quantity of hydroxyl group, contact area for abrasive density stacking between abrasive and sapphire. Based on the discussions, a dynamic process of sapphire polishing is proposed.

A study on EPD of STI CMP Process with Reverse Moat Pattern (Reverse Moat Pattern을 가진 STI CMP 공정에서 EPD 고찰)

  • Lee, Kyung-Tae;Kim, Sang-Yong;Seo, Yong-Jin;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.14-17
    • /
    • 2000
  • The rise throughput and the stability in fabrication of device can be obtained by applying of CMP process to STI structure in 0.18um semiconductor device. To employ in STI CMP, the reverse moat process has been added thus the process became complex and the defects were seriously increased. Removal rates of each thin films in STi CMP was not equal hence the devices must to be effected, that is, the damage was occured in the device dimension in the case of excessive CMP process and the nitride film was remained on the device dimension in the case of insufficient CMP process than these defects affect the device characteristics. We studied the current sensing method in STI-CMP with the reverse moat pattern.

  • PDF