• 제목/요약/키워드: Chemical Mass Balance

검색결과 138건 처리시간 0.021초

여수석유화학산단 내 VOCs에 대한 오염원 분류표의 개발 및 CMB 모델에 의한 기여도 산정 (Development of Source Profiles and Estimation of Source Contribution for VOCs by the Chemical Mass Balance Model in the Yeosu Petrochemical Industrial Complex)

  • 전준민;허당;김동술
    • 한국대기환경학회지
    • /
    • 제21권1호
    • /
    • pp.83-96
    • /
    • 2005
  • The purposes of this study were to characterize the local levels of VOCs (volatile organic compounds), to develop source profiles of VOCs, and to quantify the source contribution of VOCs using the CMB (chemical mass balance) model. The concentration of VOCs had been measured every 6-day duration in the SRO monitoring site in the Yeosu Petrochemical Industrial Complex from September 2000 to August 2002. The total of 35 target VOCs, which were included in the TO-14 designated from the U.S. EPA, was selected to be monitored in the study area. During a 24-h period, the ambient VOCs were sampled by using canisters placing about 10 ~ 15 m above the ground level. The collected canisters were then analyzed by a GC-MS in the laboratory. Aside from ambient sampling at the SRO site, the VOCs had been intensively and massively measured from 8 direct sources and 4 general sources in the study area. The results obtained in the study were as follows; first, the annual mean concentrations of the target VOCs were widely distributed regardless of monitoring sites in the Yeosu Petrochemical Industrial Complex. In particular, the concentrations of BTX (Benzene, Toluene, Xylene), vinyl chloride were higher than other target compounds. Second, based on these source sample data, source profiles for VOCs were developed to apply a receptor model, the CMB model. Third, the results of source apportionment study for the VOCs in the SRO Site were as follows; The source of petrochemical plant was apportioned by 31.3% in terms of VOCs mass. The site was also affected by 16.7% from wastewater treatment plant, 14.0% from iron mills, 8.4% from refineries, 4.4% from oil storage, 3.8% from automobiles, 2.3% from fertilizer, 2.3% from painting, 2.2% from waste incinerator, 0.6% from graphic art, and 0.4% from gasoline vapor sources.

Sensitivity Study of the Flow-through Dynamic Flux Chamber Technique for the Soil NO Emissions

  • Kim Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제21권E3호
    • /
    • pp.75-85
    • /
    • 2005
  • A mathematical sensitivity analysis of the flow-through dynamic flux chamber technique, which has been utilized usually for various trace gas flux measurement from soil and water surface, was performed in an effort to provide physical and mathematical understandings of parameters essential for the NO flux calculation. The mass balance equation including chemical reactions was analytically solved for the soil NO flux under the steady state condition. The equilibrium concentration inside the chamber, $C_{eq}$, was found to be determined mainly by the balance between the soil flux and dilution of the gas concentration inside the chamber by introducing the ambient air. Surface deposition NO occurs inside the chamber when the $C_{eq}$ is greater than the ambient NO concentration ($C_{0}$) introducing to the chamber; NO emission from the soil occurs when the $C_{eq}$ is less than the ambient NO concentration. A sensitivity analysis of the significance of the chemical reactions of NO with the reactive species (i.e. $HO_{2},/CH_{3}O_{2},/O_{3}$) on the NO flux from soils was performed. The result of the analysis suggests that the NO flux calculated in the absence of chemical reactions and wall loss could be in error ranges from 40 to $85\%$ to the total flux.

Chemical Equilibria of Nickel Chloride in HCl Solution at 25˚C

  • Lee, Man-Seung;Nam, Sang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권10호
    • /
    • pp.2203-2207
    • /
    • 2009
  • Chemical equilbria of nickel chloride in HCl solution at $25\;{^{\circ}C}$ were analyzed by considering chemical equilibria, mass and charge balance equations. The activity coefficients of solutes were calculated by using Bromley equation. The necessary thermodynamic properties, such as the equilibrium constant for the formation of Ni$Cl^+$ at zero ionic strength and interaction parameter, were evaluated by applying Bromley equation to the stability constant data reported in the literature. It was found that most nickel exists as $Ni^{2+}$ in HCl solution up to 5 molality HCl. The pH values of Ni$Cl_2-HCl-H_2O$ system at $25\;{^{\circ}C}$ calculated in this study agreed well with the pH values measured by employing pH meter.

수정된 화학증착공정에서 다종 성분 입자 생성 및 성장 해석 (An Analysis of Generation and Growth of Multicomponent Particles in the Modified Chemical Vapor Deposition)

  • 이방원;박경순;최만수
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.670-677
    • /
    • 1999
  • An analysis of generation and growth of multicomponent particles has been carried out to predict the size and composition distributions of particles generated in the Modified Chemical Vapor Deposition(MCVD) process. In MCVD process. scale-up of sintering and micro-control of refractive index may need the Information about the size and composition distributions of $SiO_2-GeO_2$ particles that are generated and deposited. The present work solved coupled steady equations (axi-symmetric two dimensions) for mass conservation, momentum balance. energy and species(such as $SiCl_4$, $GeCl_4$, $O_2$, $Cl_2$) conservations describing fluid flow. heat and mass transfer in a tube. Sectional method has been applied to obtain multi-modal distributions of multicomponent aerosols which vary in both radial and axial directions. Chemical reactions of $SiCl_4$ and $GeCl_4$ were included and the effects of variable properties have also been considered.

익산지역 가을철 대기 중 호흡성 및 흡입성 먼지입자의 화학조성 (Chemical Composition of Respirable PM2.5 and Inhalable PM10 in Iksan City during Fall, 2004)

  • 강공언
    • 한국환경보건학회지
    • /
    • 제36권1호
    • /
    • pp.61-71
    • /
    • 2010
  • Intensive measurements of airborne respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were conducted in the downtown area of Iksan city. The $PM_{2.5}$ and $PM_{2.5}$ samples were collected twice a day in the Iksan city of Korea from October 17 to November 1, 2004. The purpose of the study was to determine the inorganic water-soluble components and trace elements of $PM_{2.5}$ and $PM_{2.5}$ in the atmospheric environment and estimate the contribution rate of major chemical components from a mass balance of all measured particulate species. The chemical analysis for PM samples was conducted for water-soluble inorganic ions using ion chromatography and trace elements using PIXE analysis. The mean concentrations of respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were $51.4{\pm}29.7$ and $79.5{\pm}39.6\;{\mu}g/m^3$, respectively, and the ratio was 0.62. The ion species of $NO_3$, $SO_4^2$, and $NH_4^+$ were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These components predominated in respirable $PM_{2.5}$ fraction, while $Na^+$, $Mg^{2+}$, $Ca^{2+}$ mostly existed in coarse particle mode. Elemental components of S, Cl, K, and Si were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These elements, except for Si, were considered to be emitted from anthropogenic sources, while Si, Al, Fe, Ca existed mainly in coarse particle mode and were considered to be emitted from crustal materials. The averaged mass balance analysis showed that ammonium nitrate, ammonium sulfate, crustal component, and other trace elements were composed of 18.4%, 13.2%, 4.8%, 3.5% for PM2.5 and 17.0%, 11.6%, 13.7%, 4.4% for $PM_{2.5}$, respectively.

직접접촉식과 동반기체식 막증류 공정의 투과수 변화에 따른 비교해석 (Permeate Flux Analysis of Direct Contact Membrane Distillation (DCMD) and Sweep Gas Membrane Distillation (SGMD))

  • 엄수환;;이용택
    • 멤브레인
    • /
    • 제21권3호
    • /
    • pp.236-246
    • /
    • 2011
  • 본 연구에서는 기공의 크기가 $0.4{\mu}m$의 소수성 막인 폴리에틸렌 100가닥으로 모듈을 제작하여 직접접촉식과 동반기체식 막증류 과정에서 막의 양단의 온도차, 공급수의 염분농도, 그리고 냉각수/동반기체의 유량에 대해서 투과수의 플럭스를 측정하였다. 이론적으로는, 동반기체식 막증류는 직접접촉식 막증류 공정의 막의 투과측 표면과 냉각수 사이에 동반 기체층이 추가된 것으로 간주하였다. 이 동반기체층은 새로운 저항층과과 동반기체의 이동중 상변화된 수증기가 손실되는 것이 투과유속을 30% 정도 감소시키게 된다. 물질수지식을 이용하여, 기존의 식과는 다르게 보정계수(${\omega}$)를 넣어 직접접촉식 막증류와 동반기체식 막증류의 이론값을 실험값과 비교 분석하였다.

물질수지를 이용한 A2O 고정생물막법에서의 호기탈질평가 (Evaluation of Oxic Denitrification in A2O Fixed Biofilm System through Mass Balance)

  • 윤조희;박승환;이상훈;김승현
    • 대한환경공학회지
    • /
    • 제22권2호
    • /
    • pp.231-239
    • /
    • 2000
  • 본 연구는 $A_2O$ 공정을 적용한 고정생물막법을 이용하여 고농도의 총무기성질소(TIN) 유입으로 인해 C/N비가 낮은 폐수를 처리하기 위하여 최적의 운전조건 탐색과 생물학적 호기탈질을 평가하였다. 혐기조와 무산소조에 세라믹 여재를 그리고 호기조에 PVC 여재를 충전한 실험장치는 C/N(TOC/TIN)비를 0.5로 일정하게 유지하고 알칼리도를 변화시켜 실험을 실시하였으며 그 결과는 다음과 같다. 유기물제거는 운전조건에 관계없이 96.0% 이상의 높은 제거효율을 얻었다. 유입수의 알칼리도를 약 1210mg/L(Run 5)로 운전하였을 때, $NH_4{^+}-N$와 총 질소 평균 제거효율은 각각 93.5%, 81.8%이었으며, 제거된 총 질소 중 64.9%가 호기조에서 생물학적 탈질에 의해서 제거되었다. 호기조에서 물질수지를 이용하여 질소와 알칼리도를 분석한 결과, 1mg의 $NO_2{^-}-N$가 탈질에 의해 제거될 때 2.49~3.46mg의 알칼리도가 생성되었다. 호기조에서의 생물학적 탈질은 ${\Delta}TOC/{\Delta}DEN$의 이론적인 비 1.22보다 낮은 0.84(Run 5)에서 일어났다.

  • PDF

연속회분식 반응 공정에서 동역학적 계수 및 미생물합성에 사용된 영양물질 산정 (Estimation of Kinetic Coefficient and Assimilated Nutrients Mass in SBR Process)

  • 지대현;신상우;이광호;이재근
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.607-612
    • /
    • 2007
  • In this study, we investigated the variations of the kinetic coefficients and Chemical Oxygen Demand (COD), N and P mass used for assimilation of a sequencing batch reactor (SBR) system with the variation of SRTs; SRTs of 7.5, 10.0, 12.5, 15.0 and 20.0 days were tested in one cycle of SBR operation to determine the optimum conditions for the operation of the SBR and estimate its COD, nitrogen and phosphorus removal efficiencies. The SBR system was operated under the conditions as follows: an operation time of 6 hours per cycle, a hydraulic retention time (HRT) of 12 hours, an influent COD loading of $0.4kg/m^3/day$, and an influent nitrogen loading of $0.068kgT-N/m^3/day$. The yield coefficient (Y) and decay rate coefficient ($k_d$) were estimated to be 0.4198 kgMLVSS/kgCOD and $0.0107day^{-1}$ by calculating the removal rate of substrate according to the variation of SRT. Considering total nitrogen amount removed by sludge waste process, eliminated by denitrification, and in clarified water effluent with reference to 150 mg/cycle of influent nitrogen amount, the percentage of nitrogen mass balance from the ratio of the nitrogen amount in effluent (N output) to that in influent (N input) for Runs 1~5 were 95.5, 97.0, 95.5, 99.5, and 95.5%, respectively, which is well accounted for, with mass balances close to 100%.

Modified Ammonia Removal Model Based on Equilibrium and Mass Transfer Principles

  • Shanableh, A.;Imteaz, M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.1920-1926
    • /
    • 2010
  • Yoon et $al.^1$ presented an approximate mathmatical model to describe ammonia removal from an experimental batch reactor system with gaseous headspace. The development of the model was initially based on assuming instantaneous equilibrium between ammonia in the aqueous and gas phases. In the model, a "saturation factor, $\beta$" was defined as a constant and used to check whether the equilibrium assumption was appropriate. The authors used the trends established by the estimated $\beta$ values to conclude that the equilibrium assumption was not valid. The authors presented valuable experimental results obtained using a carefully designed system and the model used to analyze the results accounted for the following effects: speciation of ammonia between $NH_3$ and $NH^+_4$ as a function of pH; temperature dependence of the reactions constants; and air flow rate. In this article, an alternative model based on the exact solution of the governing mass-balance differential equations was developed and used to describe ammonia removal without relying on the use of the saturation factor. The modified model was also extended to mathematically describe the pH dependence of the ammonia removal rate, in addition to accounting for the speciation of ammonia, temperature dependence of reactions constants, and air flow rate. The modified model was used to extend the analysis of the original experimental data presented by Yoon et $al.^1$ and the results matched the theory in an excellent manner.

Evaluation of geochemical processes affecting groundwater chemistry in Namwon, Korea

  • Kim, Kang-Joo;Natarajan Rajmohan;Kim, Hyung-Jung;Kim, Suk-Hwi;Hwang, Gab-Soo;Cho, Min-Joe;Lee, Sang-Ho
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.334-337
    • /
    • 2004
  • Groundwater chemistry in Namwon area, Korea, was investigated to understand the contribution of geochemical processes on groundwater chemistry. For this study, a total of 279 groundwater samples were collected from 93 wells distributed over the study area. Higher concentrations of major ions are generally encountered in the shallow alluvial wells, suggesting that these chemicals are originated from the surface contamination sources. Mass balance analysis based on reaction stoichiometry reveals that the water chemistry is regulated by three major chemical processes: weathering of silicate/ carbonate minerals, input of C1/SO$_4$ salts, and nitrate generating processes. The results show that mineral weathering is the most dominating factor regulating the groundwater chemistry. However, the groundwaters with the higher salt concentration indicate the larger mineral weathering effect, suggesting that some part of the mineral weathering effect is also associated with the anthropogenic activities such as limes applied to the cultivated lands, carbonates (CaCO$_3$) in the cement materials.

  • PDF