• Title/Summary/Keyword: Chemical Industries

Search Result 869, Processing Time 0.037 seconds

A Quantitative Analysis of the Spatial Agglomeration Pattern among the Korean Cities (한국 도시들의 공간집적 패턴에 대한 계량분석)

  • Sohn, Jungyul
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.1
    • /
    • pp.56-71
    • /
    • 2013
  • The purpose of this study is to examine the spatial distributional characteristics of industries among the Korean cities and to conduct industry classification using the findings. For this purpose, 82 cities in Korea are investigated with respect to 15 industrial sectors. In the analysis, concentration of and association between industries are recognized using both geographic and non-geographic measures. In order to measure concentration and association, locational Gini coefficient, Moran's I, correlation coefficient, and bivatiate Moran are used and 15 industrial sectors are classified based on these estimates. The findings reveal that the chemical sector shows strong geographic and non-geographic concentrations while the assembly, machinery and electronics sector only shows a strong geographic concentration. Printing and publishing, wholesale, and business services show a strong non-geographic association with other sectors. The remaining ten sectors show no explicit distribution patterns among cities. This study contributes to providing the methodology that analyzes the spatial distribution patterns of industries in a comprehensive way and is able to provide useful information in implementing industrial location policies including industrial clusters.

  • PDF

Trends and Prospects of Microfibrillated Cellulose in Bio-industries (마이크로피브릴화 셀룰로오스를 이용한 바이오산업의 동향)

  • Jung, Young Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In this review, we focus on one of the most attractive biomaterials, microfibrillated cellulose (MFC). MFC, a type of nanocellulose, mainly originates from cellulose in lignocellulosic biomass. MFC represents one of incredible important natural resources due to its abundancy, renewability, and sustainability. MFC is produced through mechanical pretreatment, and it is composed of various sizes of microfibers, ranging from a few nanometers to a few micrometers. Because of the heterogenetic compositions of MFC, it possesses superior properties as a material, such as high surface area, high aspect ratio, and peculiar insolubility as a biomaterial. These properties allow MFC to be used in various bio-industries, from the traditional pulp industry to the high-tech food/bio/chemical/medical industries. However, it is difficult to use MFC on a commercial scale owing to the high energy input required during its production and the challenge of controlling its reactivity. Therefore, future studies should be focused on accurately characterizing MFC's surface morphologies, regulating its characteristics in a desirable direction, and standardizing proper guidelines for the analysis of surface morphologies its analysis.

Effect of Formability of Physical Properties of Polyester/Melamine Cured Coating Using Polycarbonate Diol with Various Molecular Weight (폴리카보네이트 분자량이 폴리에스터/멜라민 경화형도료의 도막 성형성 및 물성에 미치는 영향)

  • Lee, Yong-Hee;Moon, Je-Ik;Kim, Hyun-Joong;Lee, Jae-Young;Noh, Seung Man;Nam, Joon Hyun
    • Journal of Adhesion and Interface
    • /
    • v.12 no.4
    • /
    • pp.105-110
    • /
    • 2011
  • Polyester/melamine cured coatings had been used for pre-primed coatings and pre-coated metal coatings, because it has good mechanical,chemical properties, and mar resistance. But it has weak points such as stiffness and low formability for making automotive components. Polyester had been synthesized using polycarbonate diol of long alkyl chain which can improve flexibility and formability which is one of the important factors for pre-coated steel sheets (PCM). In this study, strain and tensile strength were examined by the tensile test and formability was examined by the drawing test. Also, Those polyester resins were also measured by DMA to verify flexibility of cured coatings.

A Study on the Actual Status of Heat Transfer oils in Industries for Process Safety Management (공정안전관리 사업장의 열매체유 사용실태에 관한 연구)

  • Lee, Keun Won;Lee, Joo Yeob
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.33-39
    • /
    • 2014
  • Heat transfer oils are used in applications such as chemical plant heating systems, refinery heat exchange systems, certain gas processes, injection molding systems, and pulp and paper processing. These oils are extremely stable and resistant to thermal and oxidative degradation. In the event of a spill or accidental release of heat transfer oils, it can be ignited easily when there is an ignition source. This study discusses the status of safety management through the actual status of the heat transfer oils to prevent fire and explosion accidents in industries for process safety management. The actual status of the heat transfer oils in process system of industries surveyed by a questionnaire developed. The results of this study can be used to help establishment of safety management to prevent fire and explosion accidents, such as the management of heat transfer oils, safe operation and maintenance in heat transfer oil processes.

A Study on the Transition Process of Fisheries Industry, Fisheries Institute of West Coast of Korea (Around the Gogunsan Islands and adjacent Area) (우리 나라 서해안(西海岸)의 수산업(水產業) 및 수산교육기관(水產敎育機關)의 변천과정(變遷過程)에 관한 사적(史的) 고찰(考察) (고군산(古群山) 군도(群島)의 인접지역(隣接地域)을 중심(中心)으로))

  • Lee, Kil-Rae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.11 no.1
    • /
    • pp.24-42
    • /
    • 1999
  • I have studied historical transition process of fisheries industries, fisheries Institute in abreast of developing fisheries industries of west coast of Korea since 1910 year with regard to the Gogunsan Is. The results were summarized as follows. In 1910 year, fishery industry has been carried out shifting fishing gear e.g set-net in shallow waters, small stow net, small seine net adapting to the tophorgrapical feature, shape of coast, oceanic condition, however, the fishing gear and fishing method were undeveloped, so that, Japanese fishermen had been exploited fisheries resources penetrating the fishing ground. Most important species were lot of captured croaker, cod, spanish mackeral, sea abream, herring in coastal sea. nowaday, squid, anchovy, shrimp, crab, pompret were much captured. The species were captured in 18 century were not captured. It is rarely than that period. Fishereis aquatic culture had been not farmed till 1960 year, but sea laver, shrimp, crab, had been breeded 1970 year also, the fresh water fish e.g. eel, cat-fish had been breeded activately. The fisheries processing industry were composed of salt. icing, dry, method. the salted fish industry had been prevailed at Gangyng, Kwangchon, Kunsan, Julpo comparatively. The fisheries institute had been established at Kunsan at first, but institute established in other region had been abolished in a short time. This phenomenon was related with development of fisheries resources. The western coast fisheries industries had been wasted of decreasing of fisheries resources, variation of environment. Accordingly, the study of preserving the marine resources. educated man power who engaged in fisheries field have to accomplish. Sea was dying with reason of loss of mud in west coast factory waste, waste of life the increase of accident of sea polluted, each illegal fishing industry physical and chemical reason etc. in this respect, Kusan maritime college, fisheries developing agency, institute have to take important role for developing fishing industry.

  • PDF

Effect of Hydrogen on Stainless Steel and Structural Steel Using Electrochemical Charging Facility (전기화학적 장입 설비를 활용한 스테인리스강 및 구조용강의 수소 영향 분석)

  • Ki-Young Sung;Jeong-Hyeon Kim;Jung-Hee Lee;Jung-Won Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.705-713
    • /
    • 2023
  • The phenomenon of abnormal climate conditions resulting from greenhouse gas-induced global warming is increasingly prevalent. To address this challenge, global initiatives are underway to adopt environmentally friendly, zero-emission fuels. In this study, we investigate the hydrogen embrittlement characteristics of materials used for eco-friendly hydrogen storage systems. The effects of hydrogen embrittlement on austenitic stainless steels of the FCC series and structural steel of the BCC series were examined. Initially, test samples of three different steel types were prepared in 2t and 3t sizes, and hydrogen was injected into the specimens using an electrochemical method over a 24-hour period. Subsequently, a universal material testing machine (UTM) was employed to monitor changes in mechanical strength and elongation. The FCC series stainless steels exhibited a tendency for elongation to decrease, indicating low sensitivity to hydrogen. In contrast, the mechanical strength and elongation of the BCC series steel changed significantly upon hydrogen charging, posing challenges for prediction. The results of the present study are expected to serve as a fundamental database for analyzing the impact of hydrogen embrittlement on both FCC and BCC series steel materials.

Photocatalytic Membrane for Contaminants Degradation: A Review (오염물질 분해를 위한 광촉매 분리막: 총설)

  • Kahkahni, Rabea;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • Growing industrialization leads to severe water pollution. Organic effluents from pharmaceuticals and textile industries released in wastewater adversely affect the environment and human health. Presence of antibiotics used for antibacterial treatment in wastewater leads to the growth of drug resistance bacteria, which is very harmful for human being. Various small organic molecules are used for the preparation of organic dye molecules in the textile industries. These molecules hardly degrade, which is present in the wastewater effluents from printing and dyeing industries. In order to address these problems, photoactive catalyst is embedded in the membrane and wastewater are passed through it. Through this process, organic molecules are photodegraded and at the same time, the degraded compounds are separated by the membrane. Titanium dioxide (TiO2) is a semiconductor which behave as excellent photocatalyst. Photocatalytic ability is enhanced by the making its composite with other transition metal oxide and incorporated into polymeric membrane. In this review, the degradation of dye and drug molecules by photocatalytic membrane are discussed.

Analysis of CTOD Tests on Steels for Liquefied Hydrogen Storage Systems Using Hydrogen Charging Apparatus (수소 장입 장치를 활용한 액체수소 저장시스템 강재의 CTOD 시험 분석)

  • Ki-Young Sung;Jeong-Hyeon Kim;Jung-Hee Lee;Jung-Won Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.875-884
    • /
    • 2023
  • Hydrogen infiltration into metals has been reported to induce alterations in their mechanical properties under load. In this study, we conducted CTOD (Crack Tip Opening Displacement) tests on steel specimens designed for use in liquid hydrogen storage systems. Electrochemical hydrogen charging was performed using both FCC series austenitic stainless steel and BCC series structural steel specimens, while CTOD testing was carried out using a 500kN-class material testing machine. Results indicate a notable divergence in behavior: SS400 test samples exhibited a higher susceptibility to failure compared to austenitic stainless steel counterparts, whereas SUS 316L test samples displayed minimal changes in displacement and maximum load due to hydrogen charging. However, SEM (Scanning Electron Microscopy) analysis results presented challenges in clearly explaining the mechanical degradation phenomenon in the tested materials. This study's resultant database holds significant promise for enhancing the safety design of liquid hydrogen storage systems, providing invaluable insights into the performance of various steel alloys under the influence of hydrogen embrittlement.

Estimation of the Liability Risk for Release of Chemicals at Chemical Plant (화학플랜트에서의 화학물질 누출사고에 대한 배상책임 위험도 산정)

  • Moon, Jung Man;Park, Dal Jae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.438-449
    • /
    • 2020
  • This study is to improve the method of calculating the risk of liability that arise from release and dispersion of chemicals outside the plant in process industries such as chemical and petrochemical plants. To achieve this goal, the correlation factors with the risk of chemical release accident is derived by simulating release and dispersion of substances (14 types) designated by Ministry of Environment as preparation for accident, analyzing the cases of chemical release and effects of plant life damage. The method of calculating chemical liability risk was modified and supplemented based on the results obtained from the study. The correlation coefficient between the probit value of 14 chemical types and the liability risk by EURAM (European Union Risk Ranking Method) was -0.526, while the correlation coefficient with the modified chemical release accident risk was 0.319. Thus, the value from modified method shows that they appear to be correlated. According to modified calculating methodology, the correlation between ERPG-2 value and liability risk of 97 chemical types was -0.494 which is 19 times higher than existing liability risk correlation as absolute value. And the correlation coefficient of corrosion risk was 0.91. The standardized regression coefficients (β) value of correlation factors that affected the increase and decrease of risk were derived in order of Corrosion Index(0.713), ERPG-2 (0.400) and NFPA Health Index (0.0680) by values. It is expected that these findings this study result will also enable the calculation of reasonable chemical release liability risk for existing and new chemical, and will help use them as quantitative liability risk management indicators for chemical plant site.

A Study on the Thermal Characteristics of Waste Organic Sludges Generated from the Industrial Complex -Paper and Beverage Manufacturing Industries- (산업단지에서 배출되는 폐 유기성 슬러지의 열적 특성 -제지업 및 음식료업을 중심으로-)

  • Shon, Byung-Hyun;Lee, Joo-Ho;Jung, Moon-Hun;Kim, Min-Choul;Ko, Ju-Hyun;Park, Hung-Suck;Lee, Gang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1359-1367
    • /
    • 2008
  • We analyzed the physical and chemical properties such as proximate analysis, ultimate analysis, heating values, thermogravimetric analysis, and combustion test for the organic sludges generated from paper and beverage manufacturing industries in the industrial complex. The average water and combustible content of the organic sludges from paper and beverage manufacturing industries were 66.07% and 14.67%, 54.98% and 26.77%, respectively. From the ultimate analysis of the organic sludges, C, H, O, N, and S compositions were 21.75%, 3.42%, 32.70%, 0.63%, and 0.30%, respectively. For beverage manufacturing industries, C, H, O, N, and S compositions were 39.88%, 4.28%, 23.20%. 2.65%, and 0.35%, respectively. According to the results of investigating the lower heating values by Dulong's equation, 1 sludge(T company) was on the range of over 2,000 kcal/kg. This sludge could be directly applied to industries which try to use the energy by direct incineration. From the TGA test, the minimum combustion temperature of A company's sludge was about $700^{\circ}C$ for direct use for energy and that of 3 sludges(C, I, and T company) were at least over $800^{\circ}C$.