• Title/Summary/Keyword: Chemical Equilibrium Analysis

Search Result 227, Processing Time 0.023 seconds

Fabrication of Iron Oxide Nanotubes by Anodization for Phosphorus Adsorption in Water (양극산화 공정을 이용한 Iron Oxide Nanotubes의 제조 및 수중 인 흡착)

  • Lee, Won-Hee;Lim, Han-Su;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.691-698
    • /
    • 2016
  • This study was carried out to investigate the characterization of iron oxide nanotubes (INTs) by anodization method and applied adsorption isotherms and kinetic models for phosphate adsorption. SEM analysis was conducted to examine the INTs surface formation. Further XRD and XPS analysis were performed to observe the crystal structure of INTs before and after phosphate adsorption. AFM analysis was conducted to determine of Fe foil surface before and after anodization. Phosphate stock solution for adsorption experiment was prepared by $KH_2PO_4$. The batch experiment was conducted using 20 ml phosphate stock solution and $40cm^3$ of INTs in 50 ml conical tube. Adsorption isotherms were applied Langmuir and Freundlich models for adsorption equilibrium test of INTs. Pseudo first order and pseudo second order models were applied for interpretation of adsorption rate by reaction time. The determination coefficient ($R^2$) values of Langmuir and Freundlich models were 0.9157 and 0.8876 respectively.

Carbon Dioxide Reforming of Methane over a Ni/KIT-1 Catalyst (Ni/KIT-1 촉매를 이용한 메탄의 이산화탄소 개질반응 연구)

  • Ryn, Seong-Yun;Ahn, Wha-Seung;Park, Sang-Eon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1070-1078
    • /
    • 1998
  • Thermodynamic analysis on carbon dioxide reforming of methane was performed using a computer program which can handle condensed species in the products, and the reforming experiments were conducted over $Al_2O_3$, $La_2O_3$, ZSM-5, MCM-41, KIT-1 supported nickel catalysts, and a commercial ICI 46-1. It was estabished that a system which consists of $CH_4$, $CO_2$, CO, $H_2$, $H_2O$, and C is appropriate for theoretical equilibrium calculations and addition of water vapor or oxygen was found to diminish the contribution of carbon dioxide in reforming. Silicate molecular sieve-supported catalysts such as Ni/ZSM-5, Ni/MCM-41, Ni/KIT-1 were effective for high $CH_4$ and $CO_2$ conversions as well as for high CO yield. Coke formation was suppressed when CaO was added as a promoter. Ni/Ca/KIT-1 which contains 10% Ni with 3% Ca showed conversion approaching equilibrium levels above $650^{\circ}C$ and maintained constant activity over 20 h. Despite increased space velocity, relatively high conversion and CO yield were observed.

  • PDF

Analysis for Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Aniline Blue Using Activated Carbon (활성탄을 이용한 아닐린 블루의 흡착평형, 동역학 및 열역학 파라미터에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.679-686
    • /
    • 2019
  • Characteristics of adsorption equilibrium, kinetic and thermodynamic of aniline blue onto activated carbon from aqueous solution were investigated as function of initial concentration, contact time and temperature. Adsorption isotherm of aniline blue was analyzed by Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models. Langmuir isotherm model fit better with isothermal data than other isotherm models. Estmated Langmuir separation factors ($R_L=0.036{\sim}0.068$) indicated that adsorption process of aniline blue by activated carbon could be an effective treatment method. Adsorption kinetic data were fitted to pseudo first order model, pseudo second order model and intraparticle diffusion models. The kinetic results showed that the adsorption of aniline blue onto activated carbon well followed pseudo second-order model. Adsorption mechanism was evaluated in two steps, film diffusion and intraparticle diffusion, by intraparticle diffusion model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy for adsorption process were estimated. Enthalpy change (48.49 kJ/mol) indicated that this adsorption process was physical adsorption and endothermic. Since Gibbs free energy decreased with increasing temperature, the adsorption reaction became more spontaneously with increasing temperature. The isosteric heat of adsorption indicated that there is interaction between the adsorbent and the adsorbate because the energy heterogeneity of the adsorbent surface.

Study on Adsorption of Pb and Cd in Water Using Carbonized Water Treatment Sludge (탄화 정수 슬러지를 이용한 수중의 납과 카드뮴 흡착에 관한 연구)

  • Kim, Younjung;Kim, Daeik;Choi, Jong-Ha;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.5
    • /
    • pp.238-243
    • /
    • 2017
  • In this study, water treatment sludge carbonized with $400^{\circ}C$ was tested as an adsorbent for the removal of Pb and Cd in water. The carbonized sludge was characterized by thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray fluorescence spectrometry (XRF), and surface area analysis. Carbonized sludge exhibited much higher specific surface area and total pore volume than water treatment sludge itself. In batch-type adsorption process, carbonized sludge represented better adsorption performance for Pb than Cd, achieving 90~98% at the concentrations conducted in the experiments. Equilibrium data of adsorption were analyzed using the Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicated that carbonized water treatment sludge by heat treatment could be used as an efficient adsorbent for the removal of Pb and Cd from water.

Adsorption of Cd on Carbonaceous Adsorbent Developed from Automotive Waste Tire (자동차 폐타이어로부터 발달된 탄소질 흡착제에 의한 Cd의 흡착)

  • Kim, Younjung;Uh, Eun Jeong;Choi, Jong Ha;Hong, Yong Pyo;Kim, Daeik;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.339-345
    • /
    • 2017
  • Carbonaceous adsorbent (CA-WTP) was prepared by heat treatment at $400^{\circ}C$ for 2 h in N2 atmosphere using waste tire powder (WTP). WTP and CA-WTP were first characterized by thermo-gravimetric analysis (TGA), energy dispersive X-ray spectrometer (EDS), scanning electron microscopy (SEM), specific surface area analysis (BET) and FT-IR spectroscopy. Then, they were tested as adsorbents for removal of Cd in water. CA-WTP exhibited much higher specific surface area and total pore volume than WTP itself and showed higher adsorption capacity for Cd. Equilibrium data of adsorption were analyzed using Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicate that CA-WTP developed from WTP by heat treatment could be used as efficient adsorbent for the removal Cd from water.

Removal of Cs and Sr Ions by Absorbent Immobilized Zeolite with PVA (제올라이트를 PVA로 고정화한 흡착제에 의한 Cs과 Sr 이온 제거)

  • Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.450-457
    • /
    • 2015
  • In this research a adsorbent, PVA-Zeolite bead, was prepared by immobilizing zeolite with PVA. The results of XRD and SEM analysis showed that the prepared PVA-Zeolite beads had porous structure and the zeolite particles were in mobilized within the internal matrix of the beads. The adsorption properties of Sr ion and Cs ion with the adsorbent were studied by different parameters such as effect of pH, adsorption rate, and adsorption isotherm. The adsorption of Sr ion and Cs ion reached equilibrium after 540 minutes. The adsorption kinetics of both ions by the PVA-Zeolite beads were fitted well by the pseudo-second-order model more than pseudo-first-order model. The equilibrium data fitted well with Langmuir isotherm model. The maximum adsorption capacities of Sr ion and Cs ion calculated from Langmuir isotherm model were 52.08 mg/g and 58.14 mg/g, respectively. The external mass transfer step was very fast compared to the intra-particle diffusion step in the adsorption process of Cs ion and Sr ion by the PVA-Zeolite beads. This result implied that the rate controlling step was the intra-particle diffusion step.

Formation of Non-equilibrium Cu-Ta-Mo Alloy Powders by Mechanical Alloying (기계적 합금화법에 의한 비평형 Cu-Ta-Mo계 합금분말의 제조)

  • 이충효;이상진
    • Journal of Powder Materials
    • /
    • v.6 no.4
    • /
    • pp.314-319
    • /
    • 1999
  • The solid state reaction by mechanical alloying(MA) generally proceeds by lowering the free energy as the result of a chemical reaction at the interface between the two adjacent layers. However, Lee et $al.^{1-5)}$ reported that a mixture of Cu and Ta, the combination of which is characterized by a positive heat of mixing of +2kJ/mol, could be amorphized by mechanical alloying. This implies that there exists an up-hill process to raise the free energy of a mixture of pure Cu and la to that of an amorphous phase. It is our aim to investigate to what extent the MA is capable of producing a non-equilibrium phase with increasing the heat of mixing. The system chosen was the ternary $Cu_{30}Ta_{ 70-x}Mo_ x$ (x=35, 10). The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The MA powders were characterized by the X-ray diffraction with Cu-K $\alpha$ radiation, thermal analysis, electron diffraction and TEM micrographs. In the case of x=35, where pure Cu powders were mixed with equal amount of pure Ta and Mo powders, we revealed the formation of bcc solid solution after 150 h milling but its gradual decomposition by releasing fcc-Cu when milling time exceeded 200 h. However, an amorphous phase was clearly formed when the Mo content was lowered to x=10. It is believed that the amorphization of ternary $Cu_{30}Ta_{60}Mo_{10}$ powders is essentially identical to the solid state amorphization process in binary $Cu_{30}Ta_{70}$ powders.

  • PDF

Design of Naphtha Splitter Unit with Petlyuk Distillation Column Using Aspen HYSYS Simulation (Aspen HYSYS를 이용한 나프타 분리공정의 Petlyuk Distillation Column 설계)

  • Lee, Ju-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • FRN (Full range Naphtha) is distilled from crude oil in a Naphtha Splitter Unit and is separated into the Light Straight Naphtha, Heavy Naphtha, and kerosene according to the boiling point in sequence. This separation is conducted using a series of binary-like columns. In this separation method, the energy consumed in the reboiler is used to separate the heaviest components and most of this energy is discarded as vapor condensation in the overhead cooler. In this study, the first two columns of the separation process are replaced with the Petlyuk column. A structural design was exercised by a stage to stage computation with an ideal tray efficiency in the equilibrium condition. Compared to the performance of a conventional system of 3-column model, the design outcome indicates that the procedure is simple and efficient because the composition of the liquid component in the column tray was designed to be similar to the equilibrium distillation curve. An analysis of the performance of the new process indicated an energy saving of 12.3% under same total number of trays and with a saving of the initial investment cost.

Performance Analysis of Water Gas Shift Reaction in a Membrane Reactor (막반응기에서의 수성가스전이반응의 성능 분석)

  • Lim, Hankwon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.204-208
    • /
    • 2014
  • This study investigated the effect of hydrogen permeance and selectivity, catalyst amount, $H_2O/CO$ ratio in a feed stream, and Ar sweep gas on the performance of a water gas shift reaction in a membrane reactor. It was observed that a minimum hydrogen selectivity of 100 was needed in a membrane reactor to obtain a hydrogen yield higher than the one at equilibrium and the hydrogen yield enhancement gradually decreased as the hydrogen permeance increased. The CO conversion in a membrane reactor initially increased with the catalyst amount and reached a plateau later for a membrane reactor with a low hydrogen permeance while the high CO conversion independent of a catalyst amount was observed for a membrane reactor with a high hydrogen permeance. For the $H_2O/CO$ ratio in a feed stream higher than 1.5, a hydrogen permeance had little effect on the CO conversion in a membrane reactor and it was found that a minimum Ar molar flow rate of $6.7{\times}10^{-6}mol\;s^{-1}$ was needed to achieve the CO conversion higher than the one at equilibrium in a membrane reactor.

A Study on Key Factors Affecting Gross Regional Domestic Product (GRDP) of Korean (지역내총생산에 영향을 미치는 주요 요인에 관한 연구)

  • Ahn, Young Gyun
    • Journal of the Korean Regional Science Association
    • /
    • v.35 no.1
    • /
    • pp.47-57
    • /
    • 2019
  • Daegu Metropolitan City has been continuously carrying out core functions of Yeongnam region, and especially plays a role as export base of textile and chemical products in Korea. Also Daegu Metropolitan City has contributed greatly to the expansion of Korea's import and export trade and the growth of the national economy. The purpose of this study is to analyze the influence of major factors affecting GRDP in Daegu Metropolitan City through regression analysis. For this purpose, this study uses the Vector Error Correction Model(VECM) to estimate the long-run equilibrium function that affects the GRDP in Daegu Metropolitan City. This study is meaningful in that it uses the statistics related to Daegu provided by Province of Gyeongsangbuk-do and explains the dynamic characteristics of major factors affecting the GRDP in Daegu.