• Title/Summary/Keyword: Chemical Coagulation

Search Result 301, Processing Time 0.019 seconds

Comparison of Electrocoagulation and Chemical Coagulation in Removal on Water Treatment (정수처리에서 전기응집과 화학응집의 처리효율 비교)

  • Han, Moo-Young;Song, Jae-Min;Park, Sang-Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.689-695
    • /
    • 2004
  • Electrocoagulation has been suggested as a promising alternative to conventional coagulation. The process is characterized by reduced sludge production, no requirement for chemical use, and ease of operation. However, this coagulation has scarcely been studied in water purifying process. This study was performed several batch experiments to compare turbidity removal between electrocoagulation and chemical coagulation. In addition, characteristics of floe were evaluated with zeta potential and particle size distributions. Electrocoagulation showed a relatively higher removal of turbidity (approximately 5%) with the same aluminum amount than conventional chemical coagulation. In addition, turbidity removal by electrocoagulation was less sensitive to pH and was greater for more extensive pH range than chemical coagulation. The results of zeta potential and floc size distributions illustrated that electrocoagulation provided the preferable conditions for coagulation such as zeta potential close to zero millivolt and increased portions of particles in the range of 40 and $100{\mu}m$.

A New Model and Equation Derived From Surface Tension and Cohesive Energy Density of Coagulation Bath Solvents for Effective Precipitation Polymerization of Acrylonitrile

  • Zhou, You;Xue, Liwei;Yi, Kai;Zhang, Li;Ryu, Seung Kon;Jin, Ri Guang
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.182-186
    • /
    • 2012
  • A new model and resultant equation for the coagulation of acrylonitrile monomers in precipitation polymerization are suggested in consideration of the surface tension (${\gamma}$) and cohesive energy density ($E_{CED}$). The equation was proven to be quite favorable by considering figure fittings from known surface tensions and cohesive energy densities of certain organic solvents. The relationship between scale value of surface tension (${\gamma}$/M) and cohesive energy density of monomers can be obtained by changing the coagulation bath component for effective precipitation polymerization of acrylonitrile in wet spinning.

The growth of zinc oxide particles by coagulation in aerosol reactor (에어로졸 반응기에서 산화아연 입자의 응집 성장)

  • Lee, Jong Ho;Song, Shin Ae;Park, Seung Bin
    • Particle and aerosol research
    • /
    • v.4 no.2
    • /
    • pp.69-75
    • /
    • 2008
  • Nanosize ZnO particles were prepared by oxidation of zinc vapor and the particle growth was modeled by a coagulation model by assuming that the characteristic time for reaction was much shorter than coagulation time and residence time (${\tau}_{reaction}{\ll}{\tau}_{coagulation}{\ll}{\tau}_{residence}$). Experimental measurement of zinc oxide particles diameter was consistent with the predicted result from the coagulation model. For practical purpose of predicting zinc oxide size in areosol reactor, the constant kernel solution is concluded to be sufficient, Uniqueness of nano-scale property of zinc oxide was confirmed by the higher photocatalytic activity of zinc oxide than nanosize titania particles.

  • PDF

Study of Wastewater Treatment in the Continuous Electro-Coagulation Plug Flow Reactor after Ozone Treatment (오존처리수의 전기응집처리 연구)

  • 박영규
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2001
  • The water treatment by electrochemical method was performed to increase the yield of production. Continuous plug flow reactor was operated to treat poultry and domestic wastewaters. Experimental results were compared with experimental results of the wastewater treatment by chemical coagulation, they were increased over 10% in the removal efficiency of COD and the production rate of sludge was reduced by 30%. Ozone utilized to degrade or change the organic chemical structures, which removal efficiency increased to 20% in the electro-coagulation reactor. Economic evaluation was performed to estimate total cost of electro-coagulation reactor in comparison with that of chemical coagulation method. The total cost to treat 1000 ton/day of domestic wastewater was reduced by 50%.

  • PDF

Effects of dolomite addition on phosphorus removal by chemical coagulation of secondary treated effluent (백운석 첨가가 응집에 의한 하수 처리수의 인 제거에 미치는 영향)

  • Lee, Byung-Ha;Park, Joon-Hong;Cha, Ho-Young;Maeng, Sung-Kyu;Song, Kyung-Guen
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.443-451
    • /
    • 2012
  • Wastewater treatment plants need to reduce phosphorus in order to meet increasingly stringent regulations on phosphorus. This study evaluated the feasibility of dolomite as a coagulation aid to enhance phosphorus removal from secondary treated wastewater by chemical coagulation. Standard jar tests were conducted to evaluate the effect of dolomite addition on a coagulation process for phosphorus removal and to determine the optimum doses of coagulants and dolomite. Coagulants used with dolomite yielded a significant improvement in phosphorus removal and reduced total phosphorus concentrations below 0.02 mg/L in wastewater effluent. Dolomite has played an important role in enhancing phosphate adsorption and increasing pH, as a coagulation aid. The maximum removal efficiency of phosphorus in this study was yielded at 25 mg/l of dolomite and 20 mg Al/L of PAC dose. However, considering economic aspects, the optimum doses of dolomite and PAC were 10 mg/L and 15mg Al/L, respectively. Consequently, dolomite, a coagulation aid, can be used in coagulation processes to enhance the removal of phosphorus.

Treatment of oily wastewater from cold-rolling mill through coagulation and integrated membrane processes

  • Cheng, Xue-Ni;Gong, Yan-Wen
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.159-163
    • /
    • 2018
  • The feasibility of applying coagulation-integrated microfiltration (MF) as a pretreatment for an ultrafiltration (UF) feed in oily wastewater treatment was investigated. The effects of different coagulants on oil removal rates from wastewater were studied. The maximum oil removal rate of 82% was obtained after coagulation with 130 mg/L of polyaluminium chloride (PAC). UF flux reached $95L/(m^2{\cdot}h)$ with coagulation-integrated MF as pretreatment. This value was 2.5 times higher than that flux obtained without pretreatment. The value of UF flux increased as the transmembrane pressure (TMP) and cross-flow velocity (CFV) of the UF module increased. UF flux gradually increased when TMP and CFV exceeded 0.4 MPa and 3 m/s, respectively, because of concentration polarization and membrane fouling stabilization. Chemical oxygen demand reduction and oil removal rate reached 95.2% and 98.5%, respectively, during integrated membrane processing with a PAC concentration of 130 mg/L, TMP of 0.4 MPa, and CFV of 3 m/s for UF. In addition, sequentially cleaning the fouling membrane with NaOH and $HNO_3$ aqueous solutions caused UF flux to recover to 90%. These encouraging results suggested that the hybrid integrated membrane process-based coagulation and MF + UF are effective approaches for oily wastewater treatment.

Analysis of Removal Characteristics and Optimization of Livestock Wastewater using a Factorial Design in the Coagulation Process (화학적 응집공정에서 요인배치 중심합성설계법을 이용한 축산폐수의 COD 제거특성 평가 및 최적화 연구)

  • Cho, Il-Hyoung;Lee, Nae-Hyun;Chang, Soon-Woong;An, Sang-Woo;Yoon, Young-Han;Zoh, Kyung-Duk
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.111-121
    • /
    • 2007
  • The experimental design and response surface methodologies haven been applied to the investigation of the chemical coagulation of livestock wastewater. The chemical coagulation reactions were mathematically described as a function of parameters raping mixing (rpm) of chemical coagulation ($X_1$), slow mixing (rpm) of chemical coagulation ($X_2$), $FeCl_3 $ concentration (mg/L) ($X_3$) and pH ($X_4$) being modeled by use of the central composite design. Empirical models were developed to describe relationship between the experimental variables and response. Statistical analysis indicates that three factors ($X_1$: raping mixing (rpm), $X_2$: slow mixing (rpm), $X_3$: $FeCl_3 $ concentration (mg/L) on the linear term (main effect), slow mixing (rpm) (${X_2}^2$) on the non-linear term (quadratic), and two factors ($X_1-X_3$, $X_2-X_3$) on the non-linear term (cross-product) had significant effects, respectively. The estimated ridge of maximum responses and optimal conditions for CODcr using canonical analysis was 87.44% ($X_1$: 229 rpm, $X_2$: 51 rpm, $X_3$: 877 mg/L, $X_4$: 4.3). To confirm this optimum condition, three additional experiments were performed and the mean CODcr removal (%) and concentration (mg/L) with a standard deviation of $87{\pm}1.2%$ ($576{\pm}34ppm$) were obtained.

Recovery of ultrafine particles from Chemical-Mechanical Polishing wastewater discharged by the semiconductor industry

  • Tu, Chia-Wei;Wen, Shaw-Bing;Dahtong Ray;Shen, Yun-Hwei
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.715-718
    • /
    • 2001
  • This study uses traditional alum coagulation and sedimentation process to treat CMP wastewater from cleaning after polishing. The primary goal is to successfully recycle both solid fines and water for semiconductor manufacturing. Results indicated that CMP wastewater may be successfully treated to recover clean water and fine particles by alum coagulation. The optimum operating conditions for coagulation are as fellowing: alum dosage of 10 ppm, pH at 5, rapid mixing speed at 800 rpm, 5 min rapid mixing time, and long slow mixing time. The treated water with low turbidity and an average residual aluminum ion concentration of 0.23 ppm may be considered for reuse. The settled sludge after alum coagulation contains mainly SiO$_2$particle with a minor content of aluminum (1.7 wt%) may be considered as raw materials for glass and ceramic industry.

  • PDF

Chemical Coagulation Treatment Using Alum and PACl in Complex Wastewater (Alum과 PACl을 이용한 응집처리)

  • Sung, Il-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.1
    • /
    • pp.53-57
    • /
    • 2009
  • In order to treat the complex wastewater containing organic compound and solids, pre-treatment system associated with molecular separation process were investigated. The reductions of COD and turbidity were obtained after coagulation processes using Alum (Aluminium sulfate, $Al_2(SO_4)_2{\cdot}18H_{2}O$) and PACl (poly aluminium chloride as 17% $Al_{2}O_{3}$). The results of study were as follows: using variable dosage of Alum, COD removal was highest at 4,000 mg/l, and the reduction of COD and turbidity was 42% and 92%, respectively. The optimum coagulation would be effective at pH 7.3 than pH 9.0 by the addition of alum at a concentration of 6,000 mg/l and PACl was add at 4.25% in raw complex wastewater with 2,000 mg/l alum at pH 7.3, the reduction of COD was reduced by 32%. But coagulation aid experiments indicated that PACl would be more effective in sludge separation ability than COD removal efficiency.

Saturation curves for chemical coagulation of wastewater treatment (화학 응집제 투입에 따른 수질항목별 하수처리 반응곡선)

  • Ryu, Jae-Na;Oh, Je-Ill;Lee, Kyeoung-Jong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.537-548
    • /
    • 2010
  • Recently the Government has announced updated water quality standards for wastewater treatment effluent (become effective in 2012). That includes highly enforced regulations for T-P, BOD and COD, and a large budget, in particular for phosphorus removal, was set by the Ministry of environment. Chemical coagulation destabilizes colloidal particles so that particles grow to larger flocs, and solid particles are removed by solid-liquid separation. The efficiency of chemical coagulation depends on a various factors, including coagulant types and costs, construction and operation costs for the treatment facilities and so on. The proper selection should be based on the treatment efficiency of coagulants and underlying costs. The current research was to evaluate the treatment efficiencies of coagulants on a variety of wastewater influents and to develop saturation curves for several water quality parameters. Typical $Al_2(SO_4)_3$ and $FeCl_3$ were tested under a range of coagulant concentrations. The pollutant removal efficiencies of chemical treatment both for the $Al_2(SO_4)_3$ and $FeCl_3$ were especially high for T-P, followed by SS, BOD and COD. Correlation test also proved the highest relationship between SS and T-P.