• 제목/요약/키워드: Chemical Catalyst

검색결과 2,496건 처리시간 0.023초

Oxidation of Ethylbenzene Using Nickel Oxide Supported Metal Organic Framework Catalyst

  • Peng, Mei Mei;Jeon, Ung Jin;Ganesh, Mani;Aziz, Abidov;Vinodh, Rajangam;Palanichamy, Muthiahpillai;Jang, Hyun Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3213-3218
    • /
    • 2014
  • A metal organic framework-supported Nickel nanoparticle (Ni-MOF-5) was successfully synthesized using a simple impregnation method. The obtained solid acid catalyst was characterized by Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption and thermogravimetric analysis (TGA). The catalyst was highly crystalline with good thermodynamic stability (up to $400^{\circ}C$) and high surface area ($699m^2g^{-1}$). The catalyst was studied for the oxidation of ethyl benzene, and the results were monitored via gas chromatography (GC) and found that the Ni-MOF-5 catalyst was highly effective for ethyl benzene oxidation. The conversion of ethyl benzene and the selectivity for acetophenone were 55.3% and 90.2%, respectively.

Reuse of Spent FCC Catalyst for Removing Trace Olefins from Aromatics

  • Pu, Xin;Luan, Jin-Ning;Shi, Li
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2642-2646
    • /
    • 2012
  • Pretreatment of spent FCC catalyst and its application in remove trace olefins in aromatics were investigated in this research. The most effective pretreatment route of spent FCC catalyst was calcining at $700^{\circ}C$ for 1 h, washing with 5% oxalic acid solution in ultrasonic reactor and dried. Treated spent FCC catalyst was modified with metal halides, then to prepare catalyst to remove trace olefins in aromatics. X-ray diffraction, Pyridine-FTIR, $N_2$ adsorption-desorption and inductively coupled plasma optical emission spectrometer (ICP-OES) were used to investigate the pretreatment process. The result showed that the performance of the treated spent FCC catalyst was much greater than that of the spent FCC catalyst, which indicted the possibility and improvement of this research.

Chemical Poisoning of Ni/MgO Catalyst by Alkali Carbonate Vapor in the Steam Reforming Reaction of DIR-MCFC

  • 문형대;임태훈;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권12호
    • /
    • pp.1413-1417
    • /
    • 1999
  • Chemical poisoning of Ni/MgO catalyst was induced by hot alkali carbonate vapor in molten carbonate fuel cell (MCFC), and the poisoned (or contaminated) catalyst was characterized by TPR/TPO, FTIR, and XRD analysis. Carbonate electrolytes such as K and Li were transferred to the catalyst during DIR-MCFC operation at 650 ℃. The deposition of alkali species on the catalyst consequently led to physical blocking on catalytic active sites and structural deformation by chemical poisoning. TPR/TPO analysis indicated that K species enhanced the reducibility of NiO thin film over Ni as co-catalyst, and Li species lessened the reducibility of metallic Ni by chemical reaction with MgO. FTIR analysis of the poisoned catalyst did not exhibit the characteristic ${\vector}_1$$(D_{3h})$ peaks (1055 $cm^{-1},\;1085\;cm{-1})$ for pure crystalline carbonates, instead a new peak (1120 $cm^{-1})$ was observed proportionally with deformed alkali carbonates. From XRD analysis, the oxidation of metallic Ni into $Ni_xMg_{1-x}O$ was confirmed by the peak shift of MgO with shrinking of Ni particles. Conclusively, hot alkali species induced both chemical poisoning and physical deposition on Ni/MgO catalyst in DIR-MCFC at 650 ℃.

Effect of Catalyst Preparation on the Selective Hydrogenation of Biphenol over Pd/C Catalysts

  • Cho, Hong-Baek;Park, Jai-Hyun;Hong, Bum-Eui;Park, Yeung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.328-334
    • /
    • 2008
  • The effects of catalyst preparation on the reaction route and the mechanism of biphenol (BP) hydrogenation, which consists of a long series-reaction, were studied. Pd/C catalysts were prepared by incipient wetness method and precipitation and deposition method. The reaction behaviors of the prepared catalysts and a commercial catalyst along with the final product distributions were very different. The choice of the catalyst preparation conditions during precipitation and deposition including the temperature, pH, precursor addition rate, and reducing agent also had significant effects. The reaction behaviors of the catalysts were interpreted in terms of catalyst particle size, metal distribution, and support acidities.

폐 RHDS 촉매재생 후 메탈 코로게이트 지지체상에서 워시코팅에 의한 NOx 저감 SCR 촉매에 관한 연구 (A Study on the Possibility of Using of Spent RHDS Catalyst as a SCR Catalyst wash-coated on the metal corrugated substrate)

  • 나우진;차은지;강대환;고영주;조예지;최은영;박해경
    • 한국응용과학기술학회지
    • /
    • 제37권4호
    • /
    • pp.723-732
    • /
    • 2020
  • RHDS 촉매는 코크와 황 화합물 그리고 금속인 바나듐이 표면에 침적되어 비활성화가 된다. 이러한 오염물을 제거하기 위해서 먼저 폐 RHDS 촉매에 묻어있는 중질유분의 세정, 코크와 황 화합물을 고온 배소 처리한 후, 과량으로 침적되어 있는 바나듐의 침출량을 조절하기 위하여 0.5, 1 wt% 옥살산 수용액을 이용하여 초음파 교반기에서 50 ℃, 10 sec 동안 교반하여 NOx 저감을 위한 SCR 촉매로의 적용 가능성을 확인하고자 하였다. 재생처리 한 RHDS 촉매의 성분은 XRF 를 사용하여 분석하였고, 상압 고정층 연속 흐름 반응기 상에서 NOx 저감 성능을 측정하였다. 옥살산 수용액 0.5 wt%, 10 sec 동안 초음파 침출한 촉매가 가장 안정적인 NOx 저감 성능을 보였으며, 375 ℃ 이상의 고온에서는 상용 촉매와 동등 수준의 NOx 저감 성능을 확인할 수 있었으나 저온영역 200 ℃에서 250 ℃까지는 상용 촉매보다 낮은 NOx 저감 성능을 보였다. 따라서 폐 RHDS 촉매를 재생처리 한 후 분말로 메탈 코로게이트 지지체에 워시코팅한 촉매는 상용 SCR 촉매로서 이용 가능함을 확인하였다.

활성탄 담지 Co-B/C, Co-P-B/C 촉매를 이용한 NaBH4 가수분해 반응 (Hydrolysis Reaction of NaBH4 Using Activated Cabon Supported Co-B/C, Co-P-B/C Catalyst)

  • 오소형;김유겸;배효준;김동호;변영환;안호근;박권필
    • Korean Chemical Engineering Research
    • /
    • 제56권5호
    • /
    • pp.641-646
    • /
    • 2018
  • 휴대용 고분자전해질 연료전지의 수소발생용으로써 $NaBH_4$는 많은 장점을 갖고 있다. 본 연구에서는 활성탄 담지 Co-B/C, Co-P-B/C 촉매의 $NaBH_4$ 가수분해 특성에 대해 연구하였다. 촉매의 BET 표면적, 수소 수율, $NaBH_4$ 농도 영향, 촉매 내구성 등을 실험하였다. 활성탄에 담지시킴으로써 BET 면적이 비담지 촉매에 비해 2~3배 증가해 $500m^2/g$ 이상이 되었다. 활성탄 담지 촉매의 수소발생이 비담지 촉매보다 더 안정적이었다. 20 wt% $NaBH_4$에서 활성화 에너지가 59.4 kJ/mol로 Co-P-B/FeCrAlloy 촉매 보다 14% 낮았다. 활성탄 담지 촉매가 비담지 촉매에 비해 촉매 손실이 1/3~1/2로 감소해 활성탄에 촉매를 담지시킴으로써 내구성을 향상시킬 수 있었다.

水性가스 轉換反應觸媒의 流動化에 關하여 (The Fluidization of a Water Gas Shift Conversion Catalyst)

  • 이재성;김영우
    • 대한화학회지
    • /
    • 제6권1호
    • /
    • pp.54-60
    • /
    • 1962
  • The water gas shift conversion catalyst prepared by the American Cyanamide Co. was subjected to fluidization in a 2-in. Pyrex glass tube to obtain the basic fluidization characteristic data. The size of the catalyst charged ranged from 70 to 120 meshes and it was supported on a single layer 300-mesh wire gauze through which the fluidizing medium, the air, was passed. Following are some data and facts found by the authors: (1) The catalyst particles were porous, and their surfaces were trough and irregular. (2) The average effective particle density and the average shape factor of these particles were 152.2 lb/$ft^3$ and 0.865 respectively. (3) As the particle diameter of the catalyst increased, the minimum fluid voidage of the bed decreased slightly. (4) Just before the incipient fluidization, pressure drop suddenly fell and the bed expanded simultaneously. (5) After fluidization set in, the expansion characteristics of the catalyst bed were similar to those of sand and glass beads except intense bubbling in the catalyst bed.

  • PDF

Acidic and Catalytic Properties of Modified Silica Catalyst with Benzenesulfo Groups

  • Sohn, Jong-Rack;Ryu, Sam-Gon;Pae, Young-Il;Choi, Sang-June
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권5호
    • /
    • pp.403-406
    • /
    • 1990
  • Two types of new silica catalysts modified with benzenesulfonic acid derivatives were prepared by esterification or phenylation followed by sulfonation. Both catalysts thus prepared were tested as acid catalysts for 2-propanol dehydration and cumene dealkylation reactions. B catalyst () were more active than A catalyst (). Highter catalytic activity for B catalyst may be accounted for by higher resistance to water, higher acid strength, more acidity, and better thermal stability as compared with A catalyst.

백금담지 촉매의 직접메탄올 연료전지 환원전극 적용 (Application of Pt/C (60 wt.%) on electrode catalyst layer of direct methanol fuel cell)

  • 조용훈;조윤환;박현서;정남기;성영은
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.188-190
    • /
    • 2007
  • The MEA with the catalyst layer containing PtRu black and 60 wt. %Pt/C as their anode and cathode catalysts. For find to effect of carbon support, the MEA with platinum black for cathode catalyst was fabricated. The performance of the MEA with the catalyst layer containing (PtRu black:60 wt.% Pt/C) as their anode and cathode catalyst has shown competitively higher value than the performance of the MEA with the catalyst layer containing (PtRu black:Pt black) as their anode and cathode catalyst.

  • PDF