• Title/Summary/Keyword: Chemical Additive

Search Result 711, Processing Time 0.032 seconds

Dependences on Heating Conditions and Applicabilities as an Additive for ECIA of Sr1-xBaxFe3+1-ΤFe4+ ΤO3-y Ferrite System

  • Lee, Eun-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.859-864
    • /
    • 2004
  • The solid solutions of the $Sr_{1-x}Ba_xFeO_{3-y)$ system (x = 0.0, 0.1, 0.2 and 0.3) having a perovskite structure were prepared in air at 1423 K and then heat-treated in air (A), $O_2(O)\;and\;N_2(N)$ to examine possibility of controlling the nonstoichiometry and applicability as an additive for electrical conducting inorganic adhesives (ECIA). In the samples heated in $N_2$ stream, there existed almost no $Fe^{4+}$ ions, and at constant temperature their electrical conductivities were considerably lower than those of the samples heat-treated in air or $O_2.\; Sr_{0.8}Ba_{0.2}Fe^{3+}_{0.49}Fe^{4+}_{0.51}O_{2.76}$ (SB2-A) whose $Fe^{3+}/Fe^{4+}$ ratio was nearly 1 (0.96) and whose conductivity values (1.04 $ohm^{-1}cm^{-1}$ at 283 K and 1.88 $ohm^{-1}cm^{-1}$ at 673 K) were higher than any other samples, was found to be the best additive for ECIA.

Effects of Crystal Structure in Electroless Cu film for Semi-Additive Process on Chemical Etching Rate (Semi-Additive Process용 초박형 무전해 구리 피막의 결정구조가 에칭속도에 미치는 영향)

  • Lee, Chang-Myeon;Heo, Jin-Yeong;Lee, Hong-Gi
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.178-178
    • /
    • 2015
  • SAP 씨앗층용 구리필름에 대한 결정구조와 에칭속도의 상관관계를 알아보았다. 그 결과, 저지수 면보다는 고지수면이 우선적으로 성장되어 있는 구리피막이 높은 에칭속도를 나타내었다. 이와 같은 우선결정방위와 에칭속도의 관계를 결정구조적인 관점에서 해석하였다.

  • PDF

Introduction of Selective Electrochemical Additive Manufacturing Technology and Consideration of Integration Method for PCB Mass Production Process (선택적 전기화학 3D 프린터 기술 소개 및 PCB 양산공정 적용방식 고찰)

  • Kim, Sung-Bin;Yoo, Bongyoung
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.3
    • /
    • pp.158-163
    • /
    • 2021
  • Some studies on electrochemical additive manufacturing of metals were summarized in this technical report, and development status of selective electrochemical 3D printing technology was introduced. In order to apply it to the PCB mass production process, essential considerations how to overcome the fundamental problems, such as the sizing, process sequence and PCB process design have been described.

The Function of Hydrogen Chloride on Methane-Air Premixed Flame (메탄-공기 예혼합 화염에서 염화수소의 역할)

  • Shin, Sung-Su;Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.979-987
    • /
    • 2005
  • Numerical simulations were performed at atmospheric pressure in order to understand the effect of additives on flame speed, flame temperature, radical concentrations, $NO_x$ formation, and heat flux in freely propagating $CH_4-Air$ flames. The additives were both carbon dioxide and hydrogen chloride which had a combination of physical and chemical behavior on hydrocarbon flame. In the flame established with the same mole of methane and additive, hydrogen chloride significantly contributed toward the reduction of flame speed, flame temperature, $NO_x$ formation and heat flux by the chemical effect, whereas carbon dioxide mainly did so by the physical effect. The impact of hydrogen chloride on the decrease of the radical concentration was about $1.4\~3.0$ times as large as that of carbon dioxide. Hydrogen chloride had higher effect on the reduction of $EI_{NO}$ than carbon dioxide because of the chemical effect of hydrogen chloride. The reaction, $OH+HCl{\rightarrow}Cl+H_2O$, played an important role in the heat flux from flames added by hydrogen chloride instead of the reaction, $OH+H_2{\rightarrow}H+H_2O$ which was an important reaction in hydrocarbon flames.

Influence of Amino Acidic Additives on Properties of EPDM-g-MAH/ZnO Composites

  • Choi, Sung-Seen;Kim, Yeowool;Chung, Yu Yeon;Bae, Jong Woo;Kim, Jung-Soo
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.175-180
    • /
    • 2016
  • Influence of amino acidic chemical on properties of maleic anhydride-grafted ethylene-propylene-diene terpolymer/zinc oxide (EPDM-g-MAH/ZnO) composites was investigated. 4-Aminosalicylic acid (ASA), 4-amino-2-methoxybenzoic acid (AMBA), 12-aminolauric acid (ALA), and glutamine (Gln) were employed as the amino acidic chemicals. Though small quantity (0.5 phr) of the amino acidic chemical was added to the EPDM-g-MAH/ZnO composite, the properties were notably changed. By adding the amino acidic chemical, the percent crystallinity and apparent crosslink density were reduced. Order of the percent crystallinity was related to that of the $pK_a$ values of amino acidic chemicals. By adding the amino acidic chemical, the basic tensile properties were on the whole improved. The experimental results were explained by the $pK_a$ values of amino acidic chemicals, change of zinc ionomer formation, and interactions between the additive and EPDM-g-MAH chain.

Chemical-assisted Ultrasonic Machining of Glass by Using HF Substitute Solution (불산대체용액을 이용한 유리의 초음파 가공)

  • 전성건;남권선;김병희;김헌영;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.262-267
    • /
    • 2004
  • Ultrasonic machining has been known as one of the conventional machining methods in the glass fabrication processes. In ultrasonic machining, typically, glass is removed by the impulse energy of the abrasive generated by the ultrasonic power. However, when the machining feature decrease under hundreds of micrometers, as conventional ultrasonic machining uses only the impulse energy of the abrasive, the speed of ultrasonic machining decreases significantly and the surface roughness becomes deteriorated. To overcome this size effect, the chemicals which can erode glasses, such as HF, XF, etc, are added to the slurry. The chemical-assisted ultrasonic machining method, so called, is another alternating effective way for micro machining of glasses. In previous work, we used the hydrofluoric acid (HF) as an additive chemical. But, as the HF solution is too poisonous to be used as a ultrasonic process additive, it is needed to be substituted by other safe chemicals. As results of the machinability comparison of several chemicals, the GST-500F was selected to replace the HF. The GST-500F (pH $4.0{\pm}1.0$) is non-volatile, odorless. During experimental works, it was shown that the machining rate increases 1.5 times faster than the conventional ultrasonic machining. The machining load also decreases. However, the enlargement of the hole diameter and significant tool wear are still the problems to be solved.

Research for Solder Paste in Metallic Glass System for Thermoelectric Modules (고온열전모듈용 금속유리계 페이스트 연구)

  • Seo, Seung-Ho;Son, Geun Sik;Seo, Kang Hyun;Choi, Soon-Mok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.249-254
    • /
    • 2018
  • We researched about a bulk metallic glass system as an additive to an Ag paste for high temperature thermoelectric modules. Bulk metallic glass (BMG) ribbons were produced by using a rapid solidification process (RSP) under a cooling rate condition higher than $10^{\circ}C/sec$. We investigated BMG characteristics of the ribbons by means of x-ray diffraction (XRD) and differential scanning calorimetry (DSC) in order to evaluate the glass transition temperature ($T_g$) and the recrystallization temperature ($T_x$) lower than $400^{\circ}C$. A milling process was also developed to apply the BMG ribbons to a commercial Al paste as an additive for lower sintering temperature.

A Study on Pattern Formation of Ultra Definition Display Panel Applying Phosphoric Acid (인산을 적용한 Ultra Definition 디스플레이 패널의 패턴 형성에 관한 연구)

  • Kim, Min-Su;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.13-19
    • /
    • 2014
  • Phosphoric acid was used as etching agent instead of conventional peroxide - based chemicals for forming pattern of ultra definition display. Etchant was synthesized by mixing etching agent, oxidation agent, buffer solution, and additive into solvent, deionized water. Thicknesses of copper, main metal of ultra definition display, for etching, were 10,000 and $30,000{{\AA}}$. Etch stop of good low skew for proper pattern formation has been occurred at the content ratio of phosphoric acid 60 - 64%, nitric acid 4 - 5%, additive(potassium acetate) 1 - 3%. Buffer solution(acetic acid) decreased the metal contact angle $63.07^{\circ}$ to $42.49^{\circ}$ for benefiting pattern formation. Content variations on four components (phosphoric acid, nitric acid, acetic acid, potassium acetic acid) of the etchant with storage time were within 3 wt% after 24 hrs of etching work.