• Title/Summary/Keyword: Chelating solution

Search Result 107, Processing Time 0.022 seconds

Interlayered colored iron compounds prepared by reactions of nanoirons with bidentate chelating ligands in laponite

  • Kim, Dong Hwan;Kim, Youhyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.69-72
    • /
    • 2021
  • The reaction of ammonium ferric sulfate with sodium borohydride in laponite sol yields nanoiron colloidal solution. This solution in air forms transparent yellow brown solution. The resulting solution reacts with bidentate chelating ligands. The reaction products are characterized by UV-Vis absorption spectroscopy and X-ray diffraction. All compounds show metal to ligand charge transfer band in the region of 400~650 nm in UV-Vis absorption spectra. This indicates the formation of iron-ligand complex by air oxidation of nanoiron. Also, XRD patterns exhibit that the iron-ligand complex is intercalated in the interlayer of laponite.

The chelation of EDTA sodium salts solution for the root canal dentin treatment (상아질 치관 치료를 위한 EDTA Na염의 킬레이션)

  • Song, Kun-Ho;Chang, Hwa-Ik;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.59-62
    • /
    • 2011
  • The demineralizing effect of chelating agents(Maleic acid solution, EDTA salts solutions; disodium-, trisodium- and tetrasodium-EDTA) on hydroxyapatite(HA) for the root canal dentin treatment was investigated. Dissolution of Ca from HA was increased with increasing immersion time in chelating solutions. Among the EDTA salts solutions, tetrasodium-EDTA was least effective in dissolving Ca out from HA, and trisodium-EDTA was the most effective. Trisodium-EDTA solutionmight be more effective in removing the smear layer compared to tetrasodium-EDTA solution.

  • PDF

Analysis of Wafer Cleaning Solution Characteristics and Metal Dissolution Behavior according to the Addition of Chelating Agent (착화제 첨가에 따른 웨이퍼 세정 용액 특성 분석 및 금속 용해 거동)

  • Kim, Myungsuk;Ryu, Keunhyuk;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.25-30
    • /
    • 2021
  • The surface of silicon dummy wafers is contaminated with metallic impurities owing to the reaction with and adhesion of chemicals during the oxidation process. These metallic impurities negatively affect the device performance, reliability, and yield. To solve this problem, a wafer-cleaning process that removes metallic impurities is essential. RCA (Radio Corporation of America) cleaning is commonly used, but there are problems such as increased surface roughness and formation of metal hydroxides. Herein, we attempt to use a chelating agent (EDTA) to reduce the surface roughness, improve the stability of cleaning solutions, and prevent the re-adsorption of impurities. The bonding between the cleaning solution and metal powder is analyzed by referring to the Pourbaix diagram. The changes in the ionic conductivity, H2O2 decomposition behavior, and degree of dissolution are checked with a conductivity meter, and the changes in the absorbance and particle size before and after the reaction are confirmed by ultraviolet-visible spectroscopy (UV-vis) and dynamic light scattering (DLS) analyses. Thus, the addition of a chelating agent prevents the decomposition of H2O2 and improves the life of the silicon wafer cleaning solution, allowing it to react smoothly with metallic impurities.

Hydrolysis Rate Study of Chelated Ti Alkoxide by Using U.V. Spectrophotometer (자외선 흡수대를 이용한 Chelated Ti Alkoxide의 수화반응 연구)

  • 김선욱;윤만순;송인호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.12
    • /
    • pp.975-980
    • /
    • 1991
  • Chelated titanium alkoxides are hydrolysed showly and stable enough to prepare multicomponent gels of titania without its precipitation due to the fast hydrolysis of Ti alkoxide. The alkoxy groups of chelated titanium alkoxide are hydrolysed as fast as that of titanium alkoxide but the chelating groups are stable even in aqueous solution. The chelating groups showed different rates of hydrolysis in aqueous ammonia solution and water added one. Those rates were monitored with UV-VIS spectrophotometer by using their unique absorption bands before and after hydrolysis.

  • PDF

Evaluation of Distribution Coefficient of a Metal Ion in the Presence of n Chelating Agent

  • Baik, Min-Hoon;Lee, Kun-Jai
    • Journal of Energy Engineering
    • /
    • v.1 no.1
    • /
    • pp.97-101
    • /
    • 1992
  • A mathematical model has been developed for an analytical calculation of distribution coefficient (K$_1$) in the presence of a chelating agent, The newley formulated K$\_$D/ is given as a function of the mole fraction of a free metal ion in the solution, ${\beta}$, and will serve as an alternative for the tedious individual measurements of K$\_$D/. This formulation will be used to analyze the effects of the presence of chelating agents on the adsorption capacity of geologic media such as clay minerals and soils. The present method may be a significant progess for the evaluation of the transport phenomena and separation processes of metal ions (or radionuclides) in the presence of chelating agents.

  • PDF

Release of Cu from SDS micellar solution using complexing agents

  • 김호정;백기태;김보경;이율리아;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.307-310
    • /
    • 2004
  • Micellar enhanced ultrafiltration (MEUF) is a surfactant-based separation process and it can remove heavy metal ions from aqueous stream effectively. However, it is necessary to recover and reuse surfactants for economic feasibility because surfactant is expensive. Foam fractionation was investigated for both anionic and cationic surfactant recovery. Chelating agent such as ethylenediaminetetraacetic acid (EDTA) was studied for the separation of heavy metals from surfactant solution. Anionic surfactants bound with heavy metals can be recovered by lowering pH (acidification). In this study, citric acid and imminodiacetic acid (IDA) were applied to release copper from sodium dodecyl sulfate (SDS) micellar solution and compared with EDTA. Precipitation of copper by ferricynide and sodium sulfide were also investigated. As a result, ca. 100 % of copper was released from SDS micellar solution by 5 mM of EDTA and citric acid. And 3.3 mM of ferricyanide formed precipitate with 82.7 % of copper. 5 mM of IDA and sodium sulfide released or formed precipitate 82.5 % and 58.9 % of copper, respectively. Citric acid is harmless to environments and ferricyanide precipitates with Cu easily. Therefore, it is considered that citric acid and ferricyanide have competiveness over a famous chelating agent, EDTA, for the separation of Cu from SDS solution.

  • PDF

Adsorption and Preconcentration of Some Heavy Metals by Resorcinol-Formaldehyde Resin (Resorcinol-formaldehyde 수지에 의한 중금속 이온의 흡착과 농축)

  • Park, Chan-Il;Cha, Ki-Won
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.174-178
    • /
    • 1998
  • A chelating resin was prepared by the reaction of formaldehyde and resorcinol. It possesses high adsorption selectivity for transition metal ions such as Pb(II) and Ni(II). The adsorption and desorption yields of Pb(II), Ni(II), Co(II), Fe(II) and Zn(II) were determined using batch method. The significant characteristics of the chelating resin is the exchange processes between its hydrogen and metal ions. The mechanism of metal adsorption and desorption seems to be the competing protonation and complexation reaction of the functional group of the resin. This resin was applied to the rapid concentration of trace amounts of these metal ions and to the separation of Pb(II) from other metal ions in bulk solution.

  • PDF

Fabrication of $La_2T_2O_7$ Thin Film by Chemical Solution Deposition (CSD 방법을 이용한 $La_2T_2O_7$ 박막제조)

  • 장승우;우동찬;이희영;정우식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.339-342
    • /
    • 1998
  • Ferroelectric L $a_2$ $Ti_2$ $O_{7}$(LTO) thin films were prepared by chemical solution deposition processes. Acetylacetone was used as chelating agent and nitric acid was added in the stock solution to control hydrolysis and condensation reaction rate. The LTO thin films were spin-coated on Pt/Ti/ $SiO_2$/(100)Si and Pt/Zr $O_2$/ $SiO_2$/(100)Si substrates. After multiple coating, dried thin films were heat-treated for decomposition of residual organics and crystallization. The role of acetylacetone in Ti iso-propoxide stabilization by possibly substituting $O^{i}$Pr ligand was studied by H-NMR. B site-rich impurity phase, i.e. L $a_4$ $Ti_{9}$ $O_{24}$, was found after annealing, where its appearance was dependent on process temperature indicating the possible reaction with substrate. Dielectric and other relevant electrical properties were measured and the results were compared between modified sol-gel and MOD processes.s.s.

  • PDF

A Study on the Sorption Behavior of U(VI) ion by Arsenazo I-XAD-2 Chelating Resin (Arsenazo I-XAD-2 킬레이트수지를 이용한 U(VI) 이온의 분리 및 농축에 관한 연구)

  • Lee, Chang-Hun;Lee, Si-Eun;Lim, Jae-Hee;Eom, Tae-Yoon;Kim, In-Whan;Kang, Chang-Hee;Lee, Won
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.489-499
    • /
    • 1993
  • Some sorption behaviors of U(VI) ion on Arsenazo I-XAD-2 chelating resin were investigated. This chelating resin was synthesized by the diazonium coupling of Amberlite XAD-2 resin with Arsenzo I chelating reagent and characterized by elementary analysis method and IR spectrometry. The optimum conditions for the sorption of U(VI) ion were examined with respect to pH, U(VI) ion concentration and shaking time. Total sorption capacity of this chelating resin on U(VI) ion was 0.39mmol U(VI)/g resin in the pH range of 4.0~4.5. This chelating resin was showed increased sorption capacity on the increased pH value. It was confirmed that sorption mechanism of U(VI) ion on the Arsenazo I-XAD-2 chelating resin was competition reacting between U(VI) ion and $H^+$ ion. Breakthrough volume and overall capacity of U(VI) ion measured by column were was 600 ml and 0.38 mmol U(VI)/g resin, respectively. The desorption of U(VI) ion was showed recovery of 90~96% using 3M $HNO_3$ and 3M $Na_2CO_3$ as a desorption solution. The separation and concentration of U(VI) ion from natural water and sea water was performed successfully by Arsenazo I-XAD-2 chelating resin.

  • PDF

Chemical cleaning effects on properties and separation efficiency of an RO membrane

  • Tu, Kha L.;Chivas, Allan R.;Nghiem, Long D.
    • Membrane and Water Treatment
    • /
    • v.6 no.2
    • /
    • pp.141-160
    • /
    • 2015
  • This study aims to investigate the impacts of chemical cleaning on the performance of a reverse osmosis membrane. Chemicals used for simulating membrane cleaning include a surfactant (sodium dodecyl sulfate, SDS), a chelating agent (ethylenediaminetetraacetic acid, EDTA), and two proprietary cleaning formulations namely MC3 and MC11. The impact of sequential exposure to multiple membrane cleaning solutions was also examined. Water permeability and the rejection of boron and sodium were investigated under various water fluxes, temperatures and feedwater pH. Changes in the membrane performance were systematically explained based on the changes in the charge density, hydrophobicity and chemical structure of the membrane surface. The experimental results show that membrane cleaning can significantly alter the hydrophobicity and water permeability of the membrane; however, its impacts on the rejections of boron and sodium are marginal. Although the presence of surfactant or chelating agent may cause decreases in the rejection, solution pH is the key factor responsible for the loss of membrane separation and changes in the surface properties. The impact of solution pH on the water permeability can be reversed by applying a subsequent cleaning with the opposite pH condition. Nevertheless, the impacts of solution pH on boron and sodium rejections are irreversible in most cases.