This study was carried out to elucidate the utilization of the fusant for shortening the ripening time by making an observation of the microstructure and the profile of component change. In ripening cheese, moisture content of the sample treated with tested strain is not a remarkable difference among the test samples. With an increase of the ripening time, L. helveticus showed the highest increase in protein content, followed by fusant, and then L. bulgaricus. The fat content of all starters was gradually decreased while it was it was rapidly decreased after 7 days. The pH of all starters was gradually decreased when the ripening time increased. The titratable acidity was greatly increased between a 9th day and a 15th day ripening. In investigating the light microscopic microstructure of ripened cheese samples, the sample treated with fusant indicated little difference from the other starters in decomposition of protein and fat components by microbial enzymes. In SEM observation, the structure of all cheese samples was uniform and the rough texture was converted into smooth texture by the interaction of cheese components and the abscission of single bond in casein matrix when the ripening time is increased. The fusant showed similar results in the examination of component change and its microstructure compared with the other starters. Therefore, it was revealed that the fusant can be partially used as a cheese starter instead of conventional starters by replacing them or combining them together with the other starters for shortening the ripening time.
Cheese is a nutritious food with various balanced nutrients, such as proteins, peptides, amino acids, fats, fatty acids, vitamins and minerals. Domestic cheese varieties and quality need to be improved to prevent imported cheese. To develop those cheeses, search for previous works and research for new products are needed. In cheese ripening of hard cheese, such as Cheddar or Parmesan cheese, is ripened for 2 to 24 months at 2 to 16$^{\circ}C$ to develop desired cheese flavor and body characteristics. Long time with low temperature to ripen the cheese requires high expenses. So accelerated cheese ripening is a good potential for saving in industry. Methods for acceleration of cheese ripening are temperature control, addition of bacteria or enzymes. To develop the functionality of cheese, addition of microencapsulated various probiotics and nutrients, such as iron, removal of cholesterol by crosslinked ${\beta}$-cyclodextrin, lowering blood cholesterol and serum glucose by nanopowdered functional materials et al. are necessary. Therefore, this review focused on the functionality of cheese, such as the acceleration of cheese ripening, microencapsulated probiotics and iron, and cholesterol removal.
During cheese ripening, the textural properties of cheese undergo significant changes from short, grainy, irregular to smooth, homogeneous and connected (well-net) structure. To make this change, many biochemical reactions occur during ripening and there have been tremendous researches in this topic for decades. In this review, several key parameters, such as cheese composition (especially cheese moisture and cheese pH), proteolytic activity and changes in Ca equilibrium will be discussed to understand the development of cheese texture during ripening.
The present study aimed to investigate the microbial diversity in Gouda cheese within the four months of ripening, via next-generation sequencing (NGS). Lactococcus (96.03%), and Leuconostoc (3.83%), used as starter cultures, constituted the majority of bacteria upon 454 pyrosequencing based on 16S rDNA sequences. However, no drastic differences were observed among other populations between the center and the surface portions of Gouda cheese during ripening. Although the proportion of subdominant species was <1%, slight differences in bacterial populations were observed in both the center and the surface portions. Taken together, our results suggest that environmental and processing variables of cheese manufacturing including pasteurization, starter, ripening conditions are important factors influencing the bacterial diversity in cheese and they can be used to alter nutrient profiles and metabolism and the flavor during ripening.
Molds cause severe cheese deterioration, even though some white and blue molds are used for the manufacture of Camembert and Blue cheese, respectively. The species of Geotrichum, Moniliella, Aspergillus, Penicillium, Mucor, Fusarium, Phoma, and Cladosporium are the main fungi that affect contamination during cheese ripening. Once deteriorated by fungal spoilage, cheese becomes toxic and inedible. Fungal deterioration of cheese decreases the nutritional value, flavor profiles, physicochemical and organoleptic properties, and increases toxicity and infectious disease. Fungal contamination during cheese ripening is highly damaging to cheese production in Korean farmstead milk processing companies. Therefore, these companies hesitate to develop natural and ripened cheese varieties. This article discusses the recent and ongoing developments in the removal techniques of fungal contamination during cheese ripening. There are 2 categories of antifungal agents: chemical and natural. Major chemical agents are preservatives (propionic acid, sodium propionate, and calcium propionate) and ethanol. Among the natural agents, grapefruit seed extract, phytoncide, essential oils, and garlic have been investigated as natural antifungal agents. Additionally, some studies have shown that antibiotics such as natamycin and Delvocid$^{(R)}$, have antifungal activities for cheese contaminated with fungi. Microbial resources such as probiotic lactic acid bacteria, Propionibacterium, lactic acid bacteria from Kimchi, and bacteriocin are well known as antifungal agents. In addition, ozonization treatment has been reported to inhibit the growth activity of cheese-contaminating fungi.
The ripening of cheese allows for the development of characteristic taste and flavour, nutritional substances, bio-active components and texture, helping to improve quality. Many different microbiological, biochemical and nutritional changes occur during the process depending on the quality of raw milk, added cultures and enzymes, as well as specific processing and ripening conditions. During the ripening lactose is hydrolyzed to lactic, propionic and acetic acid, helping to reduce potential effects of the problem of lactose intolerance. Fat is hydrolyzed to butyric, propionic and conjugated linoleic acid, which function as bio-active substances. Protein is hydrolyzed to different peptides and amino acids which all show various bio-activities. However, errors of cheese ripening can happen and affect the quality of the product. To guarantee good quality cheese the process needs to be managed carefully with the right microbes used and ensuring cleanliness of processing facilities, staff, ventilation and hazard analysis and critical control points (HACCP). Research into and controlling of ripening technology is crucial for producing high quality cheeses.
Four different types of cheeses were measure detailed changes in the mineral concentrations of cheese-serum during ripening. Concentrations of minerals in cheese juice were measured. The pH value using the low pH method (LPM) cheese was significantly (p<0.05) lower than that of other cheeses. Similarly the total Ca, S, Mg, and P contents of LPM cheese were significantly lower in than those of other cheeses. Ca, S, Mg, and P remained in colloidal form, while other minerals were mostly in soluble forms after 1 day. The minerals associated with the structure of cheese (i.e., casein or colloidal calcium phosphate) remained largely insoluble even after 1 month of ripening.
치즈의 숙성 전과정을 잘 설명하여 줄 수 있는 수학식을 만들었다. X(0)와 $e_2$(0) 및 $k_1$값들을 증가시킴으로써 숙성과정을 촉진시킬 수 있었고 낮은 $k_2$값과 높은 $a_2$값을 가지는 신 균주의 탐색도 필요도하다는 것을 알았다. 그러나, 치즈 숙성과정 중 나쁜 치즈맛의 생산을 피하기 위하여서는 낮은 단백질 분해요소 활동도를 갖는 균주가 절대적으로 필요하다. 따라서 이 제안된 수학적 모델식은 치즈덩어리 내에서 일어나는 효소반응들을 잘 묘사하고 있으며, 궁극적으로는 값싸고 질 좋은 치즈를 생산하는데 유용할 것이다.
P. caseicolum V.B.와 복합유산균을 사용하여 제조한 Camembert cheese를 45일간 숙성시키면서 카제인 변화와 그에 따른 기호성을 조사하였다. 숙성과정 중 수용성 질소, 비카제인태 질소, 비단백태 질소량은 증가하였다. pH 4.6-insoluble casein의 전기영동 결과 숙성 10일에는 4개의 band에서 45일에 12개의 band로 분리되었는데 ${\alpha}_{s1}-casein$은 숙성 17일에 완전히 분해되었으며, ${\beta}-casein$도 숙성 45일 동안 거의 대부분이 분해되었다. 또한 pH 4.6-soluble casein fragments의 gel filtration에서 숙성 10일에는 3개의 fraction, 24일까지는 4개의 fraction이 나타났고 31일부터는 5개의 fraction으로 분별되었다. 관능검사 결과 숙성 31일된 Camembert cheese의 기호성이 제일 높았으며, 숙성이 진행됨에 따라 hardness는 감소하였고 관능적 기호성과는 0.1%의 유의수준으로 높은 상관관계를 나타냈다.
Mucor rennet의 이용(利用) 가능성(可能性)을 타진(打診)하기 위하여 Blue cheese를 제조(製造)하고 그 각종(各種) 질소화합물(窒素化合物)의 특성(特性)을 조사(調査)한 결과(結果)를 요약(要約)하면 다음과 같다. 1. Blue cheese의 수율(收率)은 calf rennet과 Mucor rennet간(間)에는 큰 차이(差異)가 없었다. 2. 숙성과정중(熟成過程中) cheese의 고형분(固形分) 함량(含量)은 증가(增加)하였고 첨가비율(添加比率)에 따른 차이(差異)는 인정(認定)되지 않았다. 3. water soluble nitrogen은 숙성(熟成)이 진행(進行)됨에 따라 증가(增加)하였으며 숙성초일(熟成初日)부터 calf rennet에 비(比)하여 Mucor rennet 편이 높았고 숙성(熟成) 40일(日)부터는 혼합(混合)rennet이 calf rennet보다 낮았다. 4. non protein nitrogen, peptone amino nitrogen, water soluble protein nitrogen, proteose nitrogen, peptone nitrogen 및 숙성율등(熟成率等)도 water soluble nitrogen과 동등(同等)한 변화(變化)를 보였다. 5. Mucor rennet으로 제조(製造)한 Blue cheese casein을 전기영동(電氣泳動)한 결과(結果) as-casein과 ${\beta}$-casein의 분해도(分解度)가 높았으나 calf rennet로 제조(製造)한 Blue cheese의 as-casein과 ${\beta}$-casein의 분해도(分解度)는 비교적 낮았고 숙성(熟成) 60일(日)에는 Mucor rennet 처리구(處理區)의 casein은 다소 잔존(殘存)함을 알 수 있었다. 6. Blue cheese를 60일간(日間) 숙성(熟成)시켰을때 유리(遊離)아미노산(酸) 함량(含量)은 Mucor rennet으로 제조(製造)한 cheese보다 전(全) 숙성기간(熟成期間)동안 많았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.