• Title/Summary/Keyword: Chattonella antiqua

Search Result 5, Processing Time 0.026 seconds

Diurnal Modification of a Red-Tide Causing Organism, Chattonella antiqua (Raphidophyceae) from Korea

  • Kim, So-Young;Seo, Kyung-Suk;Lee, Chang-Gyu;Lee, Yoon
    • ALGAE
    • /
    • v.22 no.2
    • /
    • pp.95-106
    • /
    • 2007
  • Blooms of Chattonella species are normally during summer in inland seas with high nutrients from the land and inflowing water. These blooms cause mass fish kills worldwide. We isolated a Chattonella strain from the south coast of Korea and identified it as C. antiqua. It is known that the morphological changes of phytoplankton correspond to the diurnal vertical migrations that follow an intrinsic biological clock and a nutrient acquisition mechanism during the day and night. In electron micrographs, C. antiqua clearly showed a radial distribution of lipid bodies in subcellular regions and plastids composed in which thylakoid layers were perpendicular to the surface. A single pyrenoid was present in each plastid and it was found at the end of the plastid towards the center of the cell. Throughout the day, plastids of C. antiqua cells appeared as an expanded net-like recticulum. During the night, however, the plastids changed their shape and contracted toward the cell periphery. The electron density of pyrenoids was increased in cells harvested during the night.

Nutrient Uptake and Growth Kinetics of Chattonella antiqua (Hada) Ono (Raphidophyceae) Isolated from Korea

  • Seo, Kyung-Suk;Lee, Chang-Kyu
    • ALGAE
    • /
    • v.22 no.3
    • /
    • pp.235-240
    • /
    • 2007
  • The red tide-causing flagellate Chattonella anticfua can cause mass fish kills by their clogging in fish gills. Thisstudy examined the nutrient requirements of C. antiqua isolated from Korea. C. anticfua displayed maximum growthat the day five, followed by a decrease in cell density. Nitrate and nitrite were the preferred nitrogen sources, alonewith adenosine diphosphate for phosphorus compounds. In medium that contained ammonium, a significantdecrease in cell density was observed. Half-saturation constants, Ks, calculated from the maximum growth ratewere 4.94 U|M for NC>3 and 0.79 flM for P04. The growth of C. antiqua was not within the function of the N:P ratio (RU= 0.29). With an N:P ratio as low as 10, the increase in cell density was apparent, with a higher division rate. At lev-els above 50 fiM of NaNOg or 8 ;uM of NaHUPCU, the growth rates were somewhat decreased. Phosphate was thelimiting factor for C. antiqua growth since the starvation of phosphate had brought about a rapid decrease in celldensity in semi-continuous culture. Studies about the temporal modification of the efficiency of nitrate or phosphateuptake may be necessary to explain the bloom dynamics of C. antiaua.

The Effect of Environmental Factors on the Advent of Chattonella (Raphidophyceae) in Yeosu Coastal Waters, Korea, and the Effect of Nutrients on the Growth of Chattonella (여수 연안해역에서 침편모조류 Chattonella속 출현환경 및 영양염에 대한 성장특성)

  • Noh, Il-Hyeon;Oh, Seok-Jin;Shin, Hyeon-Ho;Kang, In-Seok;Yoon, Yang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.4
    • /
    • pp.362-372
    • /
    • 2010
  • In order to understand what leads to the appearance of harmful Chattonella algae in the Yeosu coastal waters of Korea, we measured environmental parameters every week at one station from May to November, 2006, and April to October, 2007. Four species of Chattonella appeared during the monitoring period: C. antiqua, C. globosa, C. marina and C. ovata. The range of water temperature and salinity were $15.0-27.9^{\circ}C$ and 17.6~33.0 psu, respectively, when Chattonella appeared, and their maximum cell density (4,840 cells/L) was at $27.1^{\circ}C$ and 33.0 psu. During the monitoring periods, the range of dissolved inorganic nitrogen (DIN), phosphate (DIP) and chlorophyll $\alpha$ (Chl-$\alpha$) concentrations in surface waters were $1.20-52.23\;{\mu}M$ ($8.59{\pm}8.97\;{\mu}M$), $0.03-1.56\;{\mu}M$ ($0.47{\pm}0.31\;{\mu}M$) and $0.45-31.12\;{\mu}g/L$ ($3.58{\pm}4.77\;{\mu}g/L$), respectively. Chattonella occurred at low cell density when the Chl-$\alpha$ concentration increased because of supplied nutrients, whereas their cell density increased during the periods of rapid decrease in Chl-$\alpha$. The results of growth experiments based on batch culture showed that the half saturation constant ($K_s$) of C. antiqua on ammonium (${NH_4}^-$), nitrate (${NO_3}^-$) and phosphate (${PO_4}^{2-}$) were $3.89{\mu}M$, $5.01\;{\mu}M$ and $0.63\;{\mu}M$, respectively. These Ks values are higher than those reported for diatoms and other flagellates at the DIP concentration (average $0.47{\mu}M$) of Yeosu coastal waters. Although the maximum specific growth rate (${\mu}_{max}$) of C. antiqua was lower than diatoms, it was higher than those of other flagellates. Therefore, our results indicate that the DIP level in the study area was too low to support Chattonella blooms, although Chattonella species have physiological characteristics that enable them to grow more rapidly than other flagellates when nutrient levels are higher than their $K_s$.

Molecular Phylogeny of Chattonella (Raphidophyceae) Species from Deungnyang Bay, Korea Using Single-Cell PCR (Single-cell PCR을 이용하여 분석한 득량만 Chattonella 종 (Raphidophyceae)의 분자계통학적 특성)

  • Kim, Jin Joo;Song, Seon Yeung;Park, Tae Gyu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.967-972
    • /
    • 2018
  • The genus Chattonella belonging to the class raphidophyceae, is a harmful algal bloom species. Recently, its occurrence has been increasing and expanding along the Korean coast. Species identification of the genus Chattonella only by morphological observation is difficult due to the lack of rigid cell walls. In this study, the morphological characteristics and genetic affinity of Chattonella sp. isolated from Deungnyang Bay in 2017 were examined. We carried out single-cell isolation from field samples then sequenced three different areas using the single-cell PCR method: 1) parts of ribosomal operon, the large subunit (LSU) of the rDNA, 2) the chloroplast-encoded subunit psaA of Photosystem I, and 3) rbcL encoding the large subunit of the Rubisco gene. The cells were morphologically very similar to the general genus Chattonella ($74.0{\pm}10.1{\mu}m$ in length, $33.1{\pm}3.6{\mu}m$ in width). The three partial gene sequences were insufficient to justify distinction at the species rank. However, they clustered at 99-100 % sequence similarity with C. marina, C. marina var. antiqua and C. marina var. ovata.

Enhancement of the Stability and Solubility of Prodigiosin Using β-Cyclodextrin in Seawater (β-Cyclodextrin을 이용한 해수에서의 Prodigiosin의 안정성과 용해도 향상)

  • Park, Hee-Yong;Kim, Tai-Kyoung;Han, Se-Jong;Yim, Joung-Han
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.109-113
    • /
    • 2012
  • This research was to examine the effects of various cyclodextrins on the solubility and stability of prodigiosin in seawater. Among them, ${\beta}$-cyclodextrin was found to have the best efficiency and formation of the inclusion complex was saturated when prodigiosin and ${\beta}$-cyclodextrin were mixed in a ratio of 1:8 and shaken at $25^{\circ}C$ and pH 8.0 for 6 h. The maximum algicidal activity against Chattonella antiqua using the inclusion complex stored at $4^{\circ}C$ for 5 weeks of culture was obtained, $52.28{\pm}3.41%$, which was about 5.0 fold higher than that of control. Our results suggest that inclusion complexes of prodigiosin and ${\beta}$-cyclodextrin could serve as effective algicidal agents.