형량 예측 연구는 법률 인공지능에서 가장 활발히 연구되고 있는 분야 중 하나이며, 비법률전문가의 사법 신뢰도 상승과 법률전문가의 업무 부담 완화에 긍정적 영향을 줄 수 있다. 본 연구는 형사 사건의 양형 예측에 ChatGPT 를 접목하여 입력된 사실관계와 유사한 선행 판례를 검색함으로써 형량 예측에 필요한 모델의 훈련 시간과 비용을 절감하는 접근법을 제안한다. 본 모델의 weighted F1-score 는 0.53 으로, 미세조정된 BERT 모델과 유사한 성능을 기록하였다.
Sang-Gook Kim;Minyoung Yun;Taehoon Kwon;Jung Sun Lim
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.4
/
pp.15-31
/
2023
In this study, we propose a novel approach to analyze big data related to patents in the field of smart factories, utilizing the Latent Dirichlet Allocation (LDA) topic modeling method and the generative artificial intelligence technology, ChatGPT. Our method includes extracting valuable insights from a large data-set of associated patents using LDA to identify latent topics and their corresponding patent documents. Additionally, we validate the suitability of the topics generated using generative AI technology and review the results with domain experts. We also employ the powerful big data analysis tool, KNIME, to preprocess and visualize the patent data, facilitating a better understanding of the global patent landscape and enabling a comparative analysis with the domestic patent environment. In order to explore quantitative and qualitative comparative advantages at this juncture, we have selected six indicators for conducting a quantitative analysis. Consequently, our approach allows us to explore the distinctive characteristics and investment directions of individual countries in the context of research and development and commercialization, based on a global-scale patent analysis in the field of smart factories. We anticipate that our findings, based on the analysis of global patent data in the field of smart factories, will serve as vital guidance for determining individual countries' directions in research and development investment. Furthermore, we propose a novel utilization of GhatGPT as a tool for validating the suitability of selected topics for policy makers who must choose topics across various scientific and technological domains.
Recently, the use of Large Language Models (LLMs) such as ChatGPT has been increasing in various fields such as interactive commerce and mobile financial services. However, LMMs, which are mainly created by learning existing documents, can also learn various human biases inherent in documents. Nevertheless, there have been few comparative studies on the aspects of bias and discrimination in LLMs. The purpose of this study is to examine the existence and extent of nine types of discrimination (Age, Disability status, Gender identity, Nationality, Physical appearance, Race ethnicity, Religion, Socio-economic status, Sexual orientation) in LLMs and suggest ways to improve them. For this purpose, we utilized BBQ (Bias Benchmark for QA), a tool for identifying discrimination, to compare three large-scale language models including ChatGPT, GPT-3, and Bing Chat. As a result of the evaluation, a large number of discriminatory responses were observed in the mega-language models, and the patterns differed depending on the mega-language model. In particular, problems were exposed in elder discrimination and disability discrimination, which are not traditional AI ethics issues such as sexism, racism, and economic inequality, and a new perspective on AI ethics was found. Based on the results of the comparison, this paper describes how to improve and develop large-scale language models in the future.
This study investigates the antecedents and mechanisms influencing trust and behavioral intentions formation towards new AI chatbots, such as ChatGPT, as travel information searching services. Analyzing the roles of variables such as familiarity, novelty, personal innovativeness, information quality and perceived anthropomorphism, the research elucidates the impact of these factors on users' cognitive and affective trust, ultimately affecting their intention to adopt information and sustain the use of the AI chatbot. Results indicate that perceived familiarity and information quality positively influence both cognitive and affective trust, whereas perceived novelty contributes positively only to cognitive trust. Additionally, the personal innovativeness of new AI chatbot users was found to weaken the effect of familiarity on perceived trust, while the perceived level of anthropomorphism of the chatbot amplified the effects of novelty and familiarity on cognitive trust. These findings underscore the importance of considering factors such as familiarity, personal innovativeness, information quality and anthropomorphism in the design and implementation of AI chatbots, affecting trust and behavioral intention.
Generative AI has arrived and it's here. Education, research, industry, and labor are all on edge about the changes it will bring. It is noteworthy that while there is a wide range of optimistic and pessimistic predictions about the impact of generative AI, there is more concern than hope when it comes to education. This paper focuses on the lack of discussion on the impact of AI in higher education. First, we reviewed the process of the emergence of generative AI and introduced how the impact of AI is being understood from various perspectives. Second, we classified work areas based on expertise and efficiency and analyzed the impact of AI on work in each area. Finally, the study found that the educational perception of generative AI and the way it is perceived for engineering education purposes can be very different. It also argued that there is a lack of active discussion and debate on areas that need to be specifically discussed around generative AI. This has led to a phenomenon known as professors' delayed indifference. We emphasized that it is time for a serious and realistic discussion on the connection and integration of AI and education.
Adaptive has gained significant attention in Education Technology (EdTech), with personalized learning experiences becoming increasingly important. Next-generation chatbots, including models like ChatGPT, are emerging in the field of education. These advanced tools show great potential for delivering personalized and adaptive learning experiences. This paper reviews previous research on adaptive learning and the role of chatbots in education. Based on this, the paper explores current and future chatbot technologies to propose a framework for using ChatGPT or similar chatbots in adaptive learning. The framework includes personalized design, targeted resources and feedback, multi-turn dialogue models, reinforcement learning, and fine-tuning. The proposed framework also considers learning attributes such as age, gender, cognitive ability, prior knowledge, pacing, level of questions, interaction strategies, and learner control. However, the proposed framework has yet to be evaluated for its usability or effectiveness in practice, and the applicability of the framework may vary depending on the specific field of study. Through proposing this framework, we hope to encourage learners to more actively leverage current technologies, and likewise, inspire educators to integrate these technologies more proactively into their curricula. Future research should evaluate the proposed framework through actual implementation and explore how it can be adapted to different domains of study to provide a more comprehensive understanding of its potential applications in adaptive learning.
Tourism and hospitality have encountered significant changes in recent years as a result of the rapid development of information technology (IT). Customers now expect more expedient services and customized travel experiences, which has intensified competition among service providers. To meet these demands, businesses have adopted sophisticated IT applications such as ChatGPT, which enables real-time interaction with consumers and provides recommendations based on their preferences. This paper focuses on the AI support-prompt middleware system, which functions as a mediator between generative AI and human users, and discusses two operational rules associated with it. The first rule is the Information Processing Rule, which requires the middleware system to determine appropriate responses based on the context of the conversation using techniques for natural language processing. The second rule is the Information Presentation Rule, which requires the middleware system to choose an appropriate language style and conversational attitude based on the gravity of the topic or the conversational context. These rules are essential for guaranteeing that the middleware system can fathom user intent and respond appropriately in various conversational contexts. This study contributes to the planning and analysis of service design by deriving design rules for middleware systems to incorporate artificial intelligence into tourism services. By comprehending the operation of AI support-prompt middleware systems, service providers can design more effective and efficient AI-driven tourism services, thereby improving the customer experience and obtaining a market advantage.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.539-545
/
2023
초거대 언어모델은 심화된 언어적 이해를 요구하는 여러 분야에 높은 영향력을 미치고 있으나, 그에 수반되는 편향성과 윤리성에 대한 우려 또한 함께 증대되었다. 특히 편향된 언어모델은 인종, 성적 지향 등과 같은 다양한 속성을 가진 개인들에 대한 편견을 강화시킬 수 있다. 그러나 이러한 편향성에 관한 연구는 대부분 영어 문화권에 한정적이며 한국어에 관한 연구 또한 한국에서 발생하는 지역 갈등, 젠더 갈등 등의 사회적 문제를 반영하지 못한다. 이에 본 연구에서는 ChatGPT의 내재된 편향성을 도출하기 위해 의도적으로 다양한 페르소나를 부여하고 한국의 사회적 쟁점들을 기반으로 프롬프트 집합을 구성하여 생성된 문장의 독성을 분석하였다. 실험 결과, 특정 페르소나 또는 프롬프트에 관해서는 지속적으로 유해한 문장을 생성하는 경향성이 나타났다. 또한 각 페르소나-쟁점에 대해 사회가 갖는 편향된 시각이 모델에 그대로 반영되어, 각 조합에 따라 생성된 문장의 독성 분포에 유의미한 차이를 보이는 것을 확인했다.
The Transactions of the Korea Information Processing Society
/
v.13
no.4
/
pp.181-188
/
2024
Traditional profanity detection methods have limitations in identifying intentionally altered profanities. This paper introduces a new method based on Named Entity Recognition, a subfield of Natural Language Processing. We developed a profanity detection technique using sequence labeling, for which we constructed a dataset by labeling some profanities in Korean malicious comments and conducted experiments. Additionally, to enhance the model's performance, we augmented the dataset by labeling parts of a Korean hate speech dataset using one of the large language models, ChatGPT, and conducted training. During this process, we confirmed that filtering the dataset created by the large language model by humans alone could improve performance. This suggests that human oversight is still necessary in the dataset augmentation process.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.