• Title/Summary/Keyword: Chat Bot

Search Result 39, Processing Time 0.032 seconds

Method of ChatBot Implementation Using Bot Framework (봇 프레임워크를 활용한 챗봇 구현 방안)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.56-61
    • /
    • 2022
  • In this paper, we classify and present AI algorithms and natural language processing methods used in chatbots. A framework that can be used to implement a chatbot is also described. A chatbot is a system with a structure that interprets the input string by constructing the user interface in a conversational manner and selects an appropriate answer to the input string from the learned data and outputs it. However, training is required to generate an appropriate set of answers to a question and hardware with considerable computational power is required. Therefore, there is a limit to the practice of not only developing companies but also students learning AI development. Currently, chatbots are replacing the existing traditional tasks, and a practice course to understand and implement the system is required. RNN and Char-CNN are used to increase the accuracy of answering questions by learning unstructured data by applying technologies such as deep learning beyond the level of responding only to standardized data. In order to implement a chatbot, it is necessary to understand such a theory. In addition, the students presented examples of implementation of the entire system by utilizing the methods that can be used for coding education and the platform where existing developers and students can implement chatbots.

Automated Answer Recommendation System Using Convolutional Neural Networks For Efficient Customer Service Based on Text (텍스트 기반 상담시스템의 효율성 제고를 위한 합성곱신경망을 이용한 자동답변추천 시스템)

  • Na, Hunyeob;Seo, Sanghyun;Yun, Jisang;Jung, Changhoon;Jeon, Yongjin;Kim, Juntae
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.272-275
    • /
    • 2017
  • 대면 서비스보다 비대면 서비스를 선호하는 소비자들의 증가로 인해 기업의 고객 응대의 형태도 변해가고 있다. 기존의 전화 상담보다는 인터넷에 글을 쓰는 형식으로 문의를 하는 고객이 증가하고 있으며, 관련 기업에서는 이와 같은 변화에 효율적으로 대처하기 위해, 텍스트 기반의 상담시스템에 대한 다양한 연구 및 투자를 하고 있다. 특히, 입력된 질의에 대해서 자동 답변하는 챗봇(ChatBot)이 주목받고 있으나, 낮은 답변 정확도로 인해 실제 응용에는 어려움을 겪고 있다. 이에 본 논문에서는 상담원이 중심이 되는 텍스트 기반의 상담시스템에서 상담원이 보다 쉽게 답변을 수행할 수 있도록 자동으로 답변을 추천해주는 자동답변추천 시스템을 제안한다. 실험에서는 기존 질의응답 시스템 구축에 주로 사용되는 문장유사도 알고리즘과 더불어 합성곱신경망을 이용한 자동답변추천 기법의 답변추천 성능을 비교한다. 실험 결과, 문장유사도 기반의 답변추천 기법보다 본 논문에서 제안한 합성곱신경망(Convolutional Neural Networks) 기반의 답변추천시스템이 더 뛰어난 답변추천 성능을 나타냄을 보였다.

  • PDF

Automated Answer Recommendation System Using Convolutional Neural Networks For Efficient Customer Service Based on Text (텍스트 기반 상담시스템의 효율성 제고를 위한 합성곱신경망을 이용한 자동답변추천 시스템)

  • Na, Hunyeob;Seo, Sanghyun;Yun, Jisang;Jung, Changhoon;Jeon, Yongjin;Kim, Juntae
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.272-275
    • /
    • 2017
  • 대면 서비스보다 비대면 서비스를 선호하는 소비자들의 증가로 인해 기업의 고객 응대의 형태도 변해가고 있다. 기존의 전화 상담보다는 인터넷에 글을 쓰는 형식으로 문의를 하는 고객이 증가하고 있으며, 관련 기업에서는 이와 같은 변화에 효율적으로 대처하기 위해, 텍스트 기반의 상담시스템에 대한 다양한 연구 및 투자를 하고 있다. 특히, 입력된 질의에 대해서 자동 답변하는 챗봇(ChatBot)이 주목받고 있으나, 낮은 답변 정확도로 인해 실제 응용에는 어려움을 겪고 있다. 이에 본 논문에서는 상담원이 중심이 되는 텍스트 기반의 상담시스템에서 상담원이 보다 쉽게 답변을 수행할 수 있도록 자동으로 답변을 추천해주는 자동답변추천 시스템을 제안한다. 실험에서는 기존 질의응답 시스템 구축에 주로 사용되는 문장유사도 알고리즘과 더불어 합성곱신경망을 이용한 자동답변추천 기법의 답변추천 성능을 비교한다. 실험 결과, 문장유사도 기반의 답변추천 기법보다 본 논문에서 제안한 합성곱신경망(Convolutional Neural Networks) 기반의 답변추천시스템이 더 뛰어난 답변추천 성능을 나타냄을 보였다.

  • PDF

A Machine Learning based Method for Measuring Inter-utterance Similarity for Example-based Chatbot (예제 기반 챗봇을 위한 기계 학습 기반의 발화 간 유사도 측정 방법)

  • Yang, Min-Chul;Lee, Yeon-Su;Rim, Hae-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.3021-3027
    • /
    • 2010
  • Example-based chatBot generates a response to user's utterance by searching the most similar utterance in a collection of dialogue examples. Though finding an appropriate example is very important as it is closely related to a response quality, few studies have reported regarding what features should be considered and how to use the features for similar utterance searching. In this paper, we propose a machine learning framework which uses various linguistic features. Experimental results show that simultaneously using both semantic features and lexical features significantly improves the performance, compared to conventional approaches, in terms of 1) the utilization of example database, 2) precision of example matching, and 3) the quality of responses.

A study on the Change of University Education Based on Fliped Learning Using AI (AI 쳇봇을 활용한 플립러닝 기반의 대학교육의 변화)

  • Kim, Ock-boon;Cho, Young-bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1618-1624
    • /
    • 2018
  • The undergraduate structure based on flipped learning should be a necessary course to cultivate value creation capability based on students' problem solving capability through the change of university education in the fourth industrial revolution era. Flipped learning stimulated the learner's high order thinking and activates communication between the faculty-student and the students through the use of activity oriented teaching strategy. Introduction and spread of Flipping Learning combining project-based learning with MOOC is required. The professor should be able to apply net teaching and learning methods using flipping learning and active learning, and develop class contents reflecting new knowledge, information and technology. As the introduction and spread of AI-based(E-Advisor, chat bot et al) learning consulting, Which is becoming increasingly advanced, the transition to "personalized education" that meets the 4th Industrial Revolution should be made.

An AI Technology-based Intelligent Senior Assistant Voice Recognition System (AI 기술 기반 지능형 시니어 도우미 음성인식 시스템)

  • Hong, Phil-Doo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.355-357
    • /
    • 2019
  • Now that we are entering an aging society, the user interface for new devices and IoT technology is very inconvenient for senior generation. To improve this, we propose an AI technology-based intelligent senior assistant voice recognition system. This system implements Cloud platform based API to accumulate data for machine learning processing, provides content for diagnosis and prevention of dementia, and provide chat-bot content for senior generation. We hope that senior generations will increase the accessibility and convenience of IoT devices and new technology devices with our system.

  • PDF

An Approach to Develop a Speech Recognition Speaker Using Chatbot for Senior Users (시니어 사용자를 위한 챗봇활용 음성인식 스피커 개발 방법)

  • Noh, Gunho;Lee, Kyoung Yong;Moon, Mikyeong
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.330-338
    • /
    • 2018
  • As population aging progresses, there is a growing demand for IT technology that can relieve the psychological anxiety of the elderly living alone, recognize the dangerous situation, and check the family members' affection. In this paper, we describe the development of a speech recognition speaker that enable senior users to give simple interactive commands by voice and monitor the status of the user. The speaker analyzes the user's voice, grasps the conversation contents through the chatbot, connects the desired service to the user, and provides the result again by voice. By using this speaker, senior users can feel relaxed by natural conversation, and can monitor the status of danger more easily.

A Tensor Space Model based Deep Neural Network for Automated Text Classification (자동문서분류를 위한 텐서공간모델 기반 심층 신경망)

  • Lim, Pu-reum;Kim, Han-joon
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.3-13
    • /
    • 2018
  • Text classification is one of the text mining technologies that classifies a given textual document into its appropriate categories and is used in various fields such as spam email detection, news classification, question answering, emotional analysis, and chat bot. In general, the text classification system utilizes machine learning algorithms, and among a number of algorithms, naïve Bayes and support vector machine, which are suitable for text data, are known to have reasonable performance. Recently, with the development of deep learning technology, several researches on applying deep neural networks such as recurrent neural networks (RNN) and convolutional neural networks (CNN) have been introduced to improve the performance of text classification system. However, the current text classification techniques have not yet reached the perfect level of text classification. This paper focuses on the fact that the text data is expressed as a vector only with the word dimensions, which impairs the semantic information inherent in the text, and proposes a neural network architecture based upon the semantic tensor space model.

Development of Artificial Intelligence-based Legal Counseling Chatbot System

  • Park, Koo-Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.29-34
    • /
    • 2021
  • With the advent of the 4th industrial revolution era, IT technology is creating new services that have not existed by converging with various existing industries and fields. In particular, in the field of artificial intelligence, chatbots and the latest technologies have developed dramatically with the development of natural language processing technology, and various business processes are processed through chatbots. This study is a study on a system that provides a close answer to the question the user wants to find by creating a structural form for legal inquiries through Slot Filling-based chatbot technology, and inputting a predetermined type of question. Using the proposal system, it is possible to construct question-and-answer data in a more structured form of legal information, which is unstructured data in text form. In addition, by managing the accumulated Q&A data through a big data storage system such as Apache Hive and recycling the data for learning, the reliability of the response can be expected to continuously improve.