This study aimed to investigate health outcome of acute myocardial infarction (AMI) patients such as mortality and length of stay in hospital and to identify factors associated with the health outcome according to the comorbidity index. Nation-wide representative samples of 3,748 adult inpatients aged between 20-85 years with acute myocardial infarction were derived from the Korea National Hospital Discharge Injury Survey, 2005-2008. Comorbidity index was measured using the Charlson Comorbidity Index (CCI). The data were analyzed using t-test, ANOVA, multiple regression, logistic regression analysis in order to investigate the effect of comorbidity on health outcome. According to the study results, the factors associated with length of hospital stay of acute myocardial infarction patients were gender, insurance type, residential area scale, admission route, PCI perform, CABG perform, and CCI. The factors associated with mortality of acute myocardial infarction patients were age, admission route, PCI perform, and CCI. CCI with a higher length of hospital stay and mortality also increased significantly. This study demonstrated comorbidity risk adjustment for health outcome and presented important data for health care policy. In the future study, more detailed and adequate comorbidity measurement tool should be developed, so patients' severity can be adjusted accurately.
As the number of aged population rapidly goes up, the cases of stroke and the related medical expenses continuously increase. The purpose of this study is to investigate the mortality of stroke patients based on CCI(Charlson Comorbidity Index) by utilizing the Korea National Hospital Discharge Injury Survey, analyzing the factors associated with the mortality of stroke patients. We analyzed 21,494 cases which are classified as the death of strokes aged over 20 years by using the Korea National Hospital Discharge Injury Survey between the year 2005 and 2010. In order to find out the mortality based on CCI and status of comorbidity, we used the technical statistics. We performed a logistic regression analysis to examine the reasons for the mortality of the strokes. We found that the independent variables for the influence of the mortality of strokes include age, type of insurance, residence urban size, size of hospital beds, the location of hospital, admission route, physical therapy, brain surgery, type of stroke, and CCI. This indicates that the effective monitoring on the age, types of stroke, comorbidity is needed. In addition to this, more medical support toward medicaid patients are needed, too. We believe that these results will be used positively for the evaluation of the stroke patients, providing the basic materials for the further research on the establishment of the health-related policy.
The objectives of the present study is to examine the validity of Charlson Comorbidity Index(CCI) based on medical record data; to utilize the index to determine outcome indexes such as mortality, length of stay and cost for the domestic patients whose have received total hip arthroplasty. Based on medical record date, 1-year Mortality was analyzed to be 0.664 of C statistic. The $R^2$ for the predictability for length of stay and the cost was about 0.0181, 0.1842. Fee of national health insurance and total cost including the cost not covered by insurance, also had statistically significance above 3 points of Charlson point score(p=0.0290, 0.0472; $p.{\le}0.05$). The 1-year mortality index, length of stay and cost of the total hip arthroplasty patients which was obtained utilizing CCI have a limitative prediction power and therefore should be carefully analyzed for use.
Kim, Se-Won;Yoon, Seok-Jun;Kyung, Min-Ho;Yun, Young-Ho;Kim, Young-Ae;Kim, Eun-Jung;Kim, Kyeong-Uoon
Health Policy and Management
/
v.19
no.4
/
pp.18-32
/
2009
The goal of this study was to predict the health outcomes of lung cancer surgery based on the Charlson comorbidity index (CCI). An attempt was likewise made to assess the prognostic value of such data for predicting mortality, survival rate, and length of hospital stay. A medical-record review of 389 patients with non-small-cell lung cancer was performed. To evaluate the agreement, the kappa coefficient was tested. Logistic-regression analysis was also conducted within two years after the surgery to determine the association of CCI with death. Survival and multiple-regression analyses were used to evaluate the relationship between CCI and the hospital care outcomes within two-year survival after lung cancer surgery and the length of hospital stay. The results of the study showed that CCI is a valid prognostic indicator of two-year mortality and length of hospital stay, and that it shows the health outcomes, such as death, survival rate, and length of hospital stay, after the surgery, thus enabling the development and application of the methodology using a systematic and objective scale for the results.
Objectives : We tried to evaluate the agreement of the Charlson comorbidity index values(CCI) obtained from different sources(medical records and National Health Insurance claims data) for gastric cancer patients. We also attempted to assess the prognostic value of these data for predicting 1-year mortality and length of the hospital stay(length of stay). Methods : Medical records of 284 gastric cancer patients were reviewed, and their National Health Insurance claims data and death certificates were also investigated. To evaluate agreement, the kappa coefficient was tested. Multiple logistic regression analysis and multiple linear regression analysis were performed to evaluate and compare the prognostic power for predicting 1 year mortality and length of stay. Results : The CCI values for each comorbid condition obtained from 2 different data sources appeared to poorly agree(kappa: 0.00-0.59). It was appeared that the CCI values based on both sources were not valid prognostic indicators of 1-year mortality. Only medical record-based CCI was a valid prognostic indicator of length of stay, even after adjustment of covariables($\beta$ = 0.112, 95% CI = [0.017-1.267]). Conclusions : There was a discrepancy between the data sources with regard to the value of CCI both for the prognostic power and its direction. Therefore, assuming that medical records are the gold standard for the source for CCI measurement, claims data is not an appropriate source for determining the CCI, at least for gastric cancer.
Purpose: This study investigated the validity of the Charlson comorbidity index (CCI) as a predictor of periodontal disease (PD) over a 12-year period. Methods: Nationwide representative samples of 149,785 adults aged ${\geq}60$ years with PD (International Classification of Disease, 10th revision [ICD-10], K052-K056) were derived from the National Health Insurance Service-Elderly Cohort during 2002-2013. The degree of comorbidity was measured using the CCI (grade 0-6), including 17 diseases weighted on the basis of their association with mortality, and data were analyzed using multivariate Cox proportional-hazards regression in order to investigate the associations of comorbid diseases (CDs) with PD. Results: The multivariate Cox regression analysis with adjustment for sociodemographic factors (sex, age, household income, insurance status, residence area, and health status) and CDs (acute myocardial infarction, congestive heart failure, peripheral vascular disease, cerebral vascular accident, dementia, pulmonary disease, connective tissue disorders, peptic ulcer, liver disease, diabetes, diabetes complications, paraplegia, renal disease, cancer, metastatic cancer, severe liver disease, and human immunodeficiency virus [HIV]) showed that the CCI in elderly comorbid participants was significantly and positively correlated with the presence of PD (grade 1: hazard ratio [HR], 1.11; P<0.001; grade ${\geq}2$: HR, 1.12, P<0.001). Conclusions: We demonstrated that a higher CCI was a significant predictor of greater risk for PD in the South Korean elderly population.
Purpose: The purpose of this study was to compare the applicability of the Charlson Comorbidity Index (CCI) and Acute Physiology, Age, Chronic Health Evaluation III (APACHE III) to the prediction of the healthcare outcomes of intensive care unit (ICU) patients. Methods: This research was performed with 136 adult patients (age>18 years) who were admitted to the ICU between May and June 2012. Data were measured using the CCI score with a comorbidity index of 19 and the APACHE III score on the standard of the worst result with vital signs and laboratory results. Discrimination was evaluated using receiver operating characteristic (ROC) curves and area under an ROC curve (AUC). Calibration was performed using logistic regression. Results: The overall mortality was 25.7%. The mean CCI and APACHE III scores for survivors were found to be significantly lower than those of non-survivors. The AUC was 0.835 for the APACHE III score and remained high, at 0.688, for the CCI score. The rate of concordance according to the CCI and the APACHE III score was 69.1%. Conclusion: The route of admission, days in ICU, CCI, and APACHE III score are associated with an increased mortality risk in ICU patients.
Objectives : The purpose of the current study was to evaluate the usefulness of the following four comorbidity indices in gastric cancer patients who underwent surgery: Charlson Comorbidity Index(CCI), Cumulative Illness rating scale(CIRS), Index of Co-existent Disease(ICED), and Kaplan-Feinstein Scale(KFS). Methods : The study subjects were 614 adults who underwent surgery for gastric cancer at K hospital between 2005 and 2007. We examined the test-retest and inter-rater reliability of 4 comorbidity indices for 50 patients. Reliability was evaluated with Spearman rho coefficients for CCI and CIRS, while Kappa values were used for the ICED and KFS indices. Logistic regression was used to determine how these comorbidity indices affected unplanned readmission and death. Multiple regression was used for determining if the comorbidity indices affected length of stay and hospital costs. Results : The test-retest reliability of CCI and CIRS was substantial(Spearman rho=0.746 and 0.775, respectively), while for ICED and KFS was moderate(Kappa=0.476 and 0.504, respectively). The inter-rater reliability of the CCI, CIRS, and ICED was moderate(Spearman rho=0.580 and 0.668, and Kappa=0.433, respectively), but for KFS was fair(Kappa=0.383). According to the results from logistic regression, unplanned readmissions and deaths were not significantly different between the comorbidity index scores. But, according to the results from multiple linear regression, the CIRS group showed a significantly increased length of hospital stay(p<0.01). Additionally, CCI showed a significant association with increased hospital costs (p<0.01). Conclusions : This study suggests that the CCI index may be useful in the estimation of comorbidities associated with hospital costs, while the CIRS index may be useful where estimatation of comorbiditie associated with the length of hospital stay are concerned.
Journal of the Korea Academia-Industrial cooperation Society
/
v.13
no.6
/
pp.2672-2679
/
2012
The study was done to provide basic data of medical quality evaluation after developing the comorbidity disease mortality measurement modeled on the severity-adjustment method of AMI. This study analyzed 699,701 cases of Hospital Discharge Injury Data of 2005 and 2008, provided by the Korea Centers for Disease Control and Prevention. We used logistic regression to compare the risk-adjustment model of the Charlson Comorbidity Index with the predictability and compatibility of our severity score model that is newly developed for calibration. The models severity method included age, sex, hospitalization path, PCI presence, CABG, and 12 variables of the comorbidity disease. Predictability of the newly developed severity models, which has statistical C level of 0.796(95%CI=0.771-0.821) is higher than Charlson Comorbidity Index. This proves that there are differences of mortality, prevalence rate by method of mortality model calibration. In the future, this study outcome should be utilized more to achieve an improvement of medical quality evaluation, and also models will be developed that are considered for clinical significance and statistical compatibility.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.11
/
pp.126-136
/
2018
The purpose of this study was to develop a severity-adjustment model for predicting mortality in acute stroke patients using machine learning. Using the Korean National Hospital Discharge In-depth Injury Survey from 2006 to 2015, the study population with disease code I60-I63 (KCD 7) were extracted for further analysis. Three tools were used for the severity-adjustment of comorbidity: the Charlson Comorbidity Index (CCI), the Elixhauser comorbidity index (ECI), and the Clinical Classification Software (CCS). The severity-adjustment models for mortality prediction in patients with acute stroke were developed using logistic regression, decision tree, neural network, and support vector machine methods. The most common comorbid disease in stroke patients were hypertension, uncomplicated (43.8%) in the ECI, and essential hypertension (43.9%) in the CCS. Among the CCI, ECI, and CCS, CCS had the highest AUC value. CCS was confirmed as the best severity correction tool. In addition, the AUC values for variables of CCS including main diagnosis, gender, age, hospitalization route, and existence of surgery were 0.808 for the logistic regression analysis, 0.785 for the decision tree, 0.809 for the neural network and 0.830 for the support vector machine. Therefore, the best predictive power was achieved by the support vector machine technique. The results of this study can be used in the establishment of health policy in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.