• 제목/요약/키워드: Charging pressure

검색결과 213건 처리시간 0.02초

The Study on Pressure Oscillation and Heat Transfer Characteristics of Oscillating Capillary Tube Heat Pipe

  • Kim, Jong-Soo;Bui, Ngoc-Hung;Jung, Hyun-Seok;Lee, Wook-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1533-1542
    • /
    • 2003
  • In the present study, the characteristics of pressure oscillation and heat transfer performance in an oscillating capillary tube heat pipe were experimentally investigated with respect to the heat flux, the charging ratio of working fluid, and the inclination angle to the horizontal orientation. The experimental results showed that the frequency of pressure oscillation was between 0.1 Hz and 1.5 Hz at the charging ratio of 40 vol.%. The saturation pressure of working fluid in the oscillating capillary tube heat pipe increased as the heat flux was increased. Also, as the charging ratio of working fluid was increased, the amplitude of pressure oscillation increased. When the pressure waves were symmetric sinusoidal waves at the charging ratios of 40 vol.% and 60 vol.%, the heat transfer performance was improved. At the charging ratios of 20 vol.% and 80 vol.%, the waveforms of pressure oscillation were more complicated, and the heat transfer performance reduced. At the charging ratio of 40. vol.%, the heat transfer performance of the OCHP was at the best when the inclination angle was 90$^{\circ}$ the pressure wave was a sinusoidal waveform, the pressure difference was at the least, the oscillation amplitude was at the least, and the frequency of pressure oscillation was the highest.

과급 LPLi 엔진의 공연비 변화에 따른 출력성능 및 배기특성에 관한 연구 (The Study of Engine Output and Emission Characteristics according to Air Fuel Ratio far a Supercharged LPLi Engine)

  • 류재덕;윤용원;이기형;이창식
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.77-84
    • /
    • 2002
  • For the purpose of obtaining a fundamental data which is needed to develope the port injection type charged LPLi engine system, we manufactured intake port injection system of liquid charging LPG and modified heavy duty single cylinder LPLi engine from heavy duty diesel engine. Engine output and emission characteristics were analyzed under variable air/fuel ratio and charging pressure. Since LPG is consisted of propane and butane, we investigated combustion characteristics using this two kinds of fuel. From the result of charging engine performance test, engine torque increase about 30% ∼ 40% with 0.3bar charging pressure. In low speed condition, as charging pressure increase, combustion stability improve ill lean bum condition, but, in high speed condition, combustion stability make worse in lean bum condition. We know that engine output decreased rapidly from the condition of air excess ratio 1.3. In addition, we measured emission characteristics under the lean bum and charging condition. From this experiment, we found that CO emission is out of the question in the range from stiochiometric to lean burn and charging condition, but charging pressure has influence on HC emission.

수소 충전 시스템용 리셉터클의 내부 압력 분포와 압력 강하에 관한 수치적 연구 (A Numerical Analysis of Pressure Distribution and Pressure Drop in Receptacle for Hydrogen Charging System)

  • 왕위엔강;이승혁;손채훈;이세동;이현복
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.497-504
    • /
    • 2023
  • This study analyzes pressure distribution and pressure drop in the receptacle used in charging system of hydrogen fuel cell vehicles. The objective is to minimize receptacle-induced pressure drop by redesigning internal flow channels. Through numerical simulations, three receptacle variants are compared with a baseline case. Results show reduced pressure drop in the filter section. However, the check valve section exhibits higher pressure drop, requiring further improvement. By increasing throat diameter, pressure drop is decreased by 28% between inlet and outlet of the receptacle. This study shows the relationship between dynamic pressure and pressure drop, providing a guideline for receptacle performance optimization. The redesigned receptacle offers potential for enhancing hydrogen charging efficiency.

확산형 흡수식 냉장고에서 작동매체 충진조건이 증발온도에 미치는 영향 (Effects of Charging Conditions on Evaporating Temperature for Diffusion Absorption Refrigerator)

  • 김선창;김영률;백종현;박승상
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.828-834
    • /
    • 2003
  • A diffusion absorption refrigerator is a heat-generated refrigeration system. It uses a three-component working fluid consisting of the refrigerant (ammonia), the absorbent (water) and the auxiliary gas (hydrogen or helium). In this study, experimental investigations have been carried out to examine the effects of charging conditions of working fluids on the evaporating temperature for diffusion absorption refrigerator. Experimental parameters considered in the present experiments are charging concentration, solution charge and system pressure determined by auxiliary gas charged. As a result, in the charging condition of 35% of concentration and 20 kg$_{f}$cm$^2$ of system pressure, the system has the lowest evaporating temperature. It was found that there exists a minimum value of solution charge for the operation of diffusion absorption refrigerator.r.

충전압력 및 작동주파수 특성 연구에 의한 스터링 냉동기 개발 (The effect of the charging pressure and operating frequency in the Stirling Cryocooler)

  • 박성제;홍용주;김효봉;고득용;김양훈;유병건;이기백
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권2호
    • /
    • pp.62-68
    • /
    • 2001
  • This paper presents manufacturing process and test results in the optimum pressure and operating frequency for the free piston free displacer(FPFD) Stirling cryocooler designed and manufactured by Korea Institute of Machinery &Materials (KIMM). FPFD Stirling cryocooler is currently under development uses opposed linear motors to drive opposed pistons . The performance of FPFD Stirling cryocooler is evaluated as a function fo charging pressure and operating frequency. In general as the operating frequency of the compressor is increaed but natural frequency of the displacer is almost constant. The prototype has achieved no load temperature of 49K and cooling capacity of 0.5W at 7.2K.

  • PDF

고압 충전 시 수소 저장 탱크의 온도 변화 및 충전량에 관한 해석 (An Analysis on the Temperature Changes and the Amount of Charging of Hydrogen in the Hydrogen Storage Tanks During High-Pressure Filling)

  • 이길강;이길초;명노석;박경우;장선준;권정태
    • 한국수소및신에너지학회논문집
    • /
    • 제32권3호
    • /
    • pp.163-171
    • /
    • 2021
  • Securing energy sources is a key element essential to economic and industrial development in modern society, and research on renewable energy and hydrogen energy is now actively carried out. This research was conducted through experiments and analytical methods on the hydrogen filling process in the hydrogen storage tank of the hydrogen charging station. When low-temperature, high-pressure hydrogen was injected into a high-pressure tanks where hydrogen is charged, the theoretical method was used to analyze the changes in temperature and pressure inside the high-pressure tanks, the amount of hydrogen charge, and the charging time. The analysis was conducted in the initial vacuum state, called the First Cycle, and when the residual pressure was present inside the tanks, called the Second Cycle. As a result of the analysis, the highest temperature inside the tanks in the First Cycle of the high-pressure tank increased to 442.11 K, the temperature measured through the experiment was 441.77 K, the Second Cycle increased to 397.12 K, and the temperature measured through the experiment was 398 K. The results obtained through experimentation and analysis differ within ±1%. The results of this study will be useful for future hydrogen energy research and hydrogen charging station.

Evaluation of the Induction and Ionized Field Charging Methods for Electrostatic Nozzles of Orchard Sprayer

  • Laryea, G.N.;No, S.Y.;Lee, D.H.
    • Agricultural and Biosystems Engineering
    • /
    • 제3권1호
    • /
    • pp.29-34
    • /
    • 2002
  • Two charging methods of electrostatic nozzle, i.e. induction and ionized field corona charging, were designed and evaluated for orchard sprayer application. An artificial (metallic) target was constructed and used in this experiment. The charge-to-mass ratio for the induction electrode was measured by using the Faraday cage. Two conventional pressure-swirl nozzles have been employed with different orifice diameters under the same experimental operating conditions. A commercial pressure-swirl nozzle with orifice diameter of 1.0 was used for the conventional spray. The diameter of the electrostatic was 0.59 mm. The experiment was carried out for individual nozzle sprays at $0^{\circ}$, $20^{\circ}$ and $50^{\circ}$ oriented angles and three nozzles, sprayed simultaneously at a distance of 1.0 and 2.0 m from the nozzle tip to the target. The nozzles were mounted on a carriage with constant speed of 1.26 km/h with a blower attached. The weighing method was employed to evaluate for the spray deposition, ground loss and estimated drift. The results show more promising for the induction charging method, especially at $20^{\circ}$oriented angle at a distance of 1.0 m from the target for a single nozzle and when all three nozzles were operated simultaneously for spray deposition. The results of the induction charging method show promising with the developed electrostatic technique.

  • PDF

Effects of the Charging Mass of Working Fluid on the Thermal Performance of Heat Pipe with Axially Grooved Wick

  • Suh, Jeong-Se;Kang, Chang-Ho;Hong, Jung-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권2호
    • /
    • pp.79-86
    • /
    • 2004
  • An analytical and experimental study has been conducted to determine the optimal charging mass of working fluid for the maximum heat transport capacity of heat pipe with axially grooved wick. When the heat pipe is operated in a steady state, the liquid-vapor meniscus recession of working fluid to the bottom of groove is occurred in the evaporator region. In this work, the optimal charging mass of working fluid was obtained by considering the meniscus recession from the axial variation of capillary pressure, the radius of curvature and wetting angle of meniscus of liquid-vapor interface. Experimental results were also obtained by varying the charging mass of working fluid within a heat pipe, and presented for the trend of maximum heat transport capacity corresponding to the operating temperature and the elevation of heat pipe. Finally, the analytical results of the optimal charging mass of working fluid were compared with those from the experiment, both of which were in good agreement with each other.

수소전기차용 700 bar 수소충전노즐의 노즐형상을 고려한 최적설계에 관한 연구 (Study on the Optimal Design of the Nozzle Shape of the 700 bar Hydrogen Refueling Nozzle for Hydrogen Electric Vehicles)

  • 백진욱;곽기명;김남용;조용민;류성기
    • 한국기계가공학회지
    • /
    • 제21권7호
    • /
    • pp.28-33
    • /
    • 2022
  • In this study, we analyze the flow characteristics according to the internal shape of a 700bar hydrogen charging gun for hydrogen electric vehicles. When charging hydrogen, it receives a high-pressure charging pressure. At this time, we analyze the flow characteristics according to the shape of the nozzle and find the shape of the nozzle that minimizes energy loss. Ultimately, the optimal design of the nozzle was obtained by comparing the pressure difference between the inlet pressure and outlet pressure under a fixed mass flow condition.

CNG버스 내압용기 사용 및 안전관리 실태 분석 (Analysis on Actual Condition of Usage and Safety Management for CNG Pressure Vessel in Bus)

  • 김의수
    • 한국안전학회지
    • /
    • 제34권4호
    • /
    • pp.6-14
    • /
    • 2019
  • There are about 38,977 CNG cars and 247 natural gas vehicle charging stations in operation in order to improve the urban air environment. With the introduction of natural gas vehicles, the atmospheric environment, which was the main cause of air pollution in the metropolitan area, was remarkably improved. However, unlike these positive effects, CNG bus accidents, which occurred more than 10 times since 2005, have caused concern among the majority of citizens using public transportation. It is necessary to make a judgment on the feasibility and future direction of CNG pressure vessel safety management that can safeguard the safety of CNG pressure vessel at the time of starting. In this study, we investigates production and use of CNG vessel, the current status of safety management of CNG bus transportation companies & charging stations and then proposes measures to prevent accident recurrence and safety management based on the actual situation investigation and analysis.