• Title/Summary/Keyword: Charging material

Search Result 264, Processing Time 0.02 seconds

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.

Study on the Optical Characteristics of the Green Phosphor for PDP Application (PDP용 녹색 형광체의 광 특성 개선에 관한 연구)

  • Han, Bo Yong;Yoo, Jae Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.150-156
    • /
    • 2009
  • Plasma Display Panels(PDPs) require to have improved luminous efficiency, low manufacturing cost, and high image quality to compete with other flat display devices such as Liquid Crystal Displays(LCDs) and organic light-emitting diodes(OLEDs). In addition, the diversity of product line-up may be needed for high market share. In this paper, the optical characteristics of typical green phosphor for PDP application are reviewed and the problem-based solution will be proposed. We also shortly describe the principle of 3D-PDPs which are promising. Then, the requirement of green phosphor for 3D-PDP application is summarized and research achievement, as of now, is described. The typical problems of $Zn_2SiO_4:Mn$ phosphor, which is the most well-known, are the negatively charged surface property and the long decay time, which leads to unstable discharge in green cell and afterimage. These problems were solved by coating the phosphor surface with metallic oxide. It was found that $Al_2O_3$ would be the best material for $Zn_2SiO_4:Mn$ phosphor. It gives longevity as well as low operating voltage due to the charging effect in green cells. Also, new phosphors, $(Y,\;Gd)Al_3(BO_3)_4:Tb$ and $(Mg,\;Zn)Al_2O_4:Mn$ phosphor are proposed for increasing the luminance and reducing the decay time, which are capable to apply for 3D-PDP application.

Crystal Structure and Electrochemical Performance of LiNi1-xCoxO2 (x=0.0~1.0) According to Co Substitution (Co 치환량에 따른 LiNi1-xCoxO2 (x=0.0~1.0)의 결정구조 및 전기화학 특성)

  • Hong, Jin K.;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • [ $LiNi_{1-x}Co_xO_2\;(x=0.0\~1.0)$ ] powders were synthesized by citrate method, and their crystal structures and electrochemical performance as the cathode material in Li secondary batteries were analyzed. X-ray diffraction analysis revealed that all the samples carry a single phase regardless of the Co substitution. The results of Rietveld refinement suggested that the crystal structure of solid solutions varies according to the Co substitution. When the Co substitution is low $(x=0.3\~0.5)$, the solid solutions carry a cubic-like structure with a relatively small value in the ratio of lattice parameters (c/a). The solid solutions made with a higher Co substitution (x=0.7), however, exhibit a layered structure with a higher c/a ratio. This difference was also observed in the electrochemical voltage spectroscopy (EVS) profiles, whereby the Co component in scarcely substituted materials shows a charging reaction at $3.7V\;(vs.\;Li/Li^+)$, but in the heavily substituted ones at 3.92V.

A Study of Hydrogen Embrittlement on a Material of CNG Storage Tank (CNG 저장용기 재료의 수소취성에 관한 연구)

  • Han, J.O.;Lee, Y.C.;Lee, J.S.;Chae, J.M.;Hong, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.9-14
    • /
    • 2011
  • A set of test was conducted on a SA-372 steel for CNG storage tank to study the effect of hydrogen embrittlement. Tensile tests were carried out several conditions such as CNG, HCNG and H2 gas environment including air and Ar under the 35 MPa. Also, the test speed was set at 4*10^-4/s and 4*10^-5/s respectively. To maintain the high pressure for environmental gas during test process, we chose MTS which was installed autoclave. Test results showed that tensile stress, elongation rate and cross sectional contraction under Ar and CNG charging condition were similar to that of reference of air. And there was little bit change with test speed variations. However, hydrogen added conditions such as HCNG and H2 were revealed noticeable change in elongation rate and cross sectional contraction. Tensile stress was still uniform for all conditions. From the results, the effect of hydrogen embrittlement was confirmed on the hydrogen enriched conditions. Also its effect was showed more strong with much hydrogen concentration and slower test speed.

Lithium Battery Anode Properties of Ball-Milled Graphite-Silicon Composites (볼밀링법으로 제조된 흑연-실리콘 복합체의 리튬전지 음전극 특성)

  • Kang, Kun-Young;Shin, Dong Ok;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.411-417
    • /
    • 2013
  • To use as an anode material of lithium secondary battery, graphite-silicon composite powders are prepared by ball-milling with silicon nanoparticles (average diameter 100 nm, 0~50 wt%) and graphite powder (average diameter $15{\mu}m$) and their electrochemical properties are examined. As the silicon content increases, the graphite becomes smaller by the ball-milling and amorphous phase appears whereas the silicon do not suffer the change of nanocrystalline phases and embeds within the amorphous phase of graphite. Cyclic voltammetry at low scan rate reveals that typical oxidation peaks of graphite and silicon appear at 0.2~0.35 and 0.55~0.6 V, respectively, with higher reversibility for repeated cycles. In contrast, the high-scan-rate redox behavior is very irreversible for repeated cycles. High irreversible capacity is exhibited in the initial charging-discharging cycles, but it diminishes as the cycle number increases. The saturated discharge capacity achieves about 485 mAh $g^{-1}$ at 50th cycle for the composite of Si 20 wt%. This is due to the formation of amorphous graphite morphology by the adequate composition (C:Si=8:2 w/w), which efficiently buffers the volume change during alloying/dealloying between silicon and lithium.

Estimation of Mass Size Distribution of Atmospheric Aerosols Using Real-Time Aerosol Measuring Instruments (실시간 에어로졸 측정장비를 이용한 대기 중 입자상 물질의 무게 농도 분포의 추정)

  • Ji, Jun-Ho;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.39-50
    • /
    • 2013
  • Real-time aerosol measuring instruments have been widely used for the measurement of atmospheric aerosol, diesel particulate matter, or material synthesis. A scanning mobility particle sizer (SMPS) measures the number size distribution of particles using electrical mobility detection technique. An aerodynamic particle sizer (APS) is used to determine the number concentration and the mean aerodynamic diameter of test particles. An electrical low-pressure impactor (ELPI) is a multi-stage impaction device to separate airborne particles into aerodynamic size classes using particle charging and electrical detection techniques. In this study, the performance of these instruments were evaluated to assess their ability to obtain mass concentrations from particle number concentration measurements made as a function of particle size. The effect of determination of particle density on the measurement of mass concentration was investigated for the three instruments.

Suggestions for Safety Improvement of CNG Bus Based on Accident and Failure Analysis (CNG버스 사고원인 분석에 근거한 안전성 향상 방안에 대한 연구)

  • Yoon, Jae-Kun;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • Three failure cases of CNG composite vessels were reported since after January 2005. The 1st and 2nd accidents were indebted to vessel defect and installation mistake. The 3rd was caused by gas leak at pipe connections. In this paper various aspects were studied based on information of the three failure analysis, which must be improved for better safety of the CNG bus system. Overpressure region caused by vessel explosion was theoretically predicted and also assessed by PHAST program. Explosion of 120 l vessel under 20 MPa is equivalent to 1.2 kg TNT explosion. The predicted value by PHAST was more serious than theoretical one. However, actual consequence of explosion was much less than both of the predicted consequences. Since the CNG vessel was designed by the performance based design methodology, it is difficult to verify whether the required process and tests were properly conducted or not after production. If material toughness is not enough, the vessel should be weak in brittle fracture at early in the morning of winter season since the metal temperature can be lower than the transition temperature. If autofrettage pressure is not correct, fatigue failure due to tensile stress during repeated charging is possible. One positive aspect is that fire did not ocurred after vessel failure. This may be indebted to fast diffusion of natural gas which hindered starting fire.

  • PDF

Comparison of Surface Characteristics According to 3D Printing Methods and Materials for the Fabrication of Microfluidic Systems (미세유체시스템 제작을 위한 3D 프린팅 방식 및 소재 별 표면특성 비교)

  • Bae, Seo Jun;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.706-713
    • /
    • 2019
  • In this study, basic research was conducted to provide guidelines for selecting printers and materials suitable for each application case by analyzing 3D printing method and surface characteristics of materials suitable for microfluidic system. We have studied the surface characteristics according to the materials for the two typical printing methods: The most commonly used method of Fused Deposition Modeling (FDM) printing and the relatively high resolution method of Stereolithography (SLA) printing. The FDM prints exhibited hydrophilic properties before post - treatment, regardless of the material, but showed hydrophobic properties after post - treatment with acetone vapor. It was confirmed by the observation of surface roughness using SEM that the change of the contact angle was due to the removal of the surface structure by post-treatment. SLA prints exhibited hydrophilic properties compared to FDM prints, but they were experimentally confirmed to be capable of surface modification using hydrophobic coatings. It was confirmed that it is impossible to make a transparent specimen in the FDM method. However, sufficient transparency is secured in the case of the SLA method. It is also confirmed that the electroporation chip of the digital electroporation system based on the droplet contact charging phenomenon was fabricated by the SLA method and the direct application to the microfluidic system by demonstrating the electroporation successfully.

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (1) - System Design of a Solar Powered UAV with 4.2m Wingspan - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (1) - 주익 4.2m 태양광 무인기 시스템 설계 -)

  • Jeong, Jaebaek;Kim, Doyoung;Kim, Taerim;Moon, Seokmin;Bae, Jae-Sung;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.471-478
    • /
    • 2022
  • This paper is about research and development of Korea Aerospace University's Solar-Powered UAV System that named of KAU-SPUAV, and describes the design process of the 4.2 m solar UAV that succeeded in a long flight of 32 hours and 19 minutes at June 2020. In order to improve the long-term flight performance of the KAU-SPUAV, For reduce drag, a circular cross-section of the fuselage was designed, and manufactured light and sturdy fuselage by applying a monocoque structure using a glass fiber composite material. In addition, a solar module optimized for the wing shape of a 4.2 m solar drone was constructed and arranged, and a propulsion system applied with the 23[in] × 23[in] propeller was constructed to improve charging and flight efficiency. The developed KAU-SPUAV consumes an average of 55W when cruising and can receive up to 165W of energy during the day, and its Long-term Endurance was verified through flight tests.

The study on collection efficiency of two-stage electrostatic precipitator using non-metallic electrode for improve corrosion resistance and light weight (내부식성과 경량성 향상을 위한 비금속 재질 집진판의 2단 전기집진기 집진효율 연구)

  • An, So-Hee;Lee, Yeawan;Kim, Ye-Sle;Kim, Yong-Jin;Han, Bangwoo;Kim, Hak-Joon
    • Particle and aerosol research
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 2021
  • We developed non-metallic electrodes that can replace metallic electrodes of the electrostatic precipitator(ESP) for the purpose of light weight, corrosion resistance, cost reduction. We manufactured three types of collection electrodes made of stainless steel (M), Carbon ink coating layer-Plastic sheet-Carbon ink coating layer (CPC), and Plastic sheet-Carbon ink coating layer-Plastic sheet (PCP). We studied the collection efficiency of a two-stage ESP using oil mist particles with and without collection stage by changing the flow rate, the material of collection electrode, and the applied voltage of the pre-charger module and the collection module. Here we measured concentrations of particles at diameters of 0.45 ㎛ (CMD; count median diameter) and 3.0 ㎛ (MMD : mass median diameter), as well as PM2.5 and PM10. As a result of the experiment, two-stage ESP had 22~25% higher collection efficiency in PM2.5 than one-stage ESP at the same applied voltage. The difference in collection efficiency by varying the materials of collection electrodes was less than 5%. The weight of the non-metallic electrode was only one eighth the weight of the metal electrode. CPC electrode had a thickness of 0.27 mm, which was 1.5 times thinner than a thickness of PCP electrode, so when the flow rate increased, the CPC electrodes couldn't be kept at equal intervals due to the fluttering unlike PCP electrodes. In addition, the PCP-CPC collection module of the present experiment followed the theoretical efficiency based on Deutsch equation and Cochet's charging theory.