• Title/Summary/Keyword: Charging material

Search Result 264, Processing Time 0.021 seconds

Analysis of Charging Phenomenon of 2-Cavity Die Casting for Automobile's Valve Housing (자동차 VALVE HOUSING용 2-CAVITY 다이캐스팅의 충전 현상 분석)

  • Lee, Jong-Hyung;Yoon, Jong-Cheul;Yoo, Duck-Sang;Lee, Chang-Heon;Ha, Hong-Bae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • In perspective of saving natural resource and energy, today's automobiles are in process of regenerating by smaller and lighter. In order to achieve the sufficiency on the consumption of the fuel, new mechanism and new assembly are required. Therefore the expectations on the new materials are very high. Especially, AI materials are widely used to reduce the weight. AI that is used in automobiles is mostly casting material, and according to the innovation of technique is in rapid development. AI Die casting is an important field as today's trend of lightweight on automobiles. One of the parts in steering system, Valve Housing plays a role of reduce the operating effort of drivers. Unfortunately, the Valve Housing which is widely reliable to the most automobiles are not developed at this moment in our automobile industry. Therefore, they are produced by casting method which cost three times or even more expensive in production. If Valve Housing, which is a part of steering system is produced by Gravity Casting, the space that manufacturing equipment will be increased, and more time and workers would be brought into service. For such reason, Die Casting would replace Gravity Casting in order to minimize cost of time, manpower, and working space.

  • PDF

A Disparate Low Loss DC to 90 GHz Wideband Series Switch

  • Gogna, Rahul;Jha, Mayuri;Gaba, Gurjot Singh;Singh, Paramdeep
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.92-97
    • /
    • 2016
  • This paper presents design and simulation of wide band RF microswitch that uses electrostatic actuation for its operation. RF MEMS devices exhibit superior high frequency performance in comparison to conventional devices. Similar techniques that are used in Very Large Scale Integration (VLSI) can be employed to design and fabricate MEMS devices and traditional batch-processing methods can be used for its manufacturing. The proposed switch presents a novel design approach to handle reliability concerns in MEMS switches like dielectric charging effect, micro welding and stiction. The shape has been optimized at actuation voltage of 14-16 V. The switch has an improved restoring force of 20.8 μN. The design of the proposed switch is very elemental and primarily composed of electrostatic actuator, a bridge membrane and coplanar waveguide which are suspended over the substrate. The simple design of the switch makes it easy for fabrication. Typical insertion and isolation of the switch at 1 GHz is -0.03 dB and -71 dB and at 85 GHz it is -0.24 dB and -29.8 dB respectively. The isolation remains more than - 20 db even after 120 GHz. To our knowledge this is the first demonstration of a metal contact switch that shows such a high and sustained isolation and performance at W-band frequencies with an excellent figure-of merit (fc=1/2.pi.Ron.Cu =1,900 GHz). This figure of merit is significantly greater than electronic switching devices. The switch would find extensive application in wideband operations and areas where reliability is a major concern.

Effect of Cementitious Composite on the Thermal and Mechanical Properties of Fiber-Reinforced Mortars for Thermal Energy Storage (열에너지 저장을 위한 시멘트 복합재료의 섬유보강 모르타르의 열역학 특성에 관한 영향)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Choi, Young-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2016
  • The thermal and mechanical properties of fiber-reinforced mortars for thermal energy storage were investigated in this paper. The effect of the combination of different cementitious composite on the thermal and mechanical characteristics of fiber-reinforced mortars was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. The results showed that the residual compressive strength of mixtures with OPC and graphite was greatest among the mixtures. Thermal conductivity of mixtures with alumina cement was greater than that of mixtures with OPC, indicating favor of alumina cement for charging and discharging in thermal energy storage system. The addition of zirconium into alumina cement increased specific heat of mixtures. Test results of this study could be used to provide information of material properties for thermal energy storage concrete.

A bio-sensor SoC Platform Using Carbon Nanotube Sensor Arrays (CNT 배열을 이용한 bio-sensor SoC 설계)

  • Chung, In-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.8-14
    • /
    • 2008
  • A fully CMOS-integrated carbon nanotube (CNT) sensor array is proposed. After the sensor chip is fabricated in commercial CMOS process, the CNTs network is formed on the top of the fabricated sensor chip through the room-temperature post-CMOS processes. When the resistance of the CNT is changed by the chemical reaction, the read-out circuit in the chip measures the charging time of the $R_{CNT}$-Capacitor. finally the information of measured frequency is converted to a digital code. The CMOS sensor chip was fabricated by standard 0.18um technology and the size of the $8{\times}8$ sensor array is $2mm{\times}2mn$. We have carried out an experiment detecting the biochemical material, glutamate, using this sensor chip. From the experiment the CMOS sensor chip shows the feasibility of sensor for the simultaneous detection of the various target materials.

Development and Analysis of the Autoclave Alternative Composite Material Molding Process Using a Pressure Device (가압장치를 이용한 오토클레이브 대체 복합재료 성형공정 개발 및 분석)

  • Kim, Jung-Soo;Kim, Byung-Ha;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.254-259
    • /
    • 2014
  • In this study, a device and pressure press process that is able to substitute autoclave process is developed. This process complements disadvantages of autoclave process which are long process-time and high production cost. The developed device provides air pressure as well as the vacuum which are greatest feature of autoclave process. The device is sealed using hydraulic pressure to keep the air pressure inside the mold. The transfer of the heat is designed to be direct. The heating and pressure charging time are decreased by reducing the interior space. Tooling cost is reduced dramatically compared to autoclave process. Spring-back phenomenon is measured and compared. The temperatures of several parts of the mold during molding are measured. The fiber volume fraction of the parts molded by autoclave process and by the developed process are compared.

Development of Functional Pulp Tray for Prevention of Static Electricity (정전기 방지를 위한 기능성 펄프 트레이 개발)

  • Lee, Ji-Young;Kim, Chul-Hwan;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Lee, Young-Min
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.52-60
    • /
    • 2015
  • Static electricity is an imbalance of electric charges within or on the surface of a material. All packed items that are particularly sensitive to static discharge must be protected by antistatic treatment. Otherwise, static electricity generated by an electrical insulator may cause serious damages to some sensitive electronics. In order to remove or prevent a buildup of static electricity, packed items must be treated with the application of an antistatic agent, which helps any excess charge to be evenly distributed. Functional pulp tray used for packing of electronic goods was developed with application of an antistatic agent. As the concentration of the antistatic agent increased, charging voltage and surface resistance of molded pulps decreased. The increase of humidity in surrounding atmosphere around molded pulps led to the decrease of accumulation of static charges. In conclusion, the surface treatment of the antistatic agent not only reduced or eliminated buildup of static electricity in the surface, but also prevented generation of tiny dirts from molded tray.

Strategic design for oxide-based anode materials and the dependence of their electrochemical properties on morphology and architecture

  • Gang, Yong-Muk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.73-73
    • /
    • 2012
  • Modern technology-driven society largely relies on hybrid electric vehicles or electric vehicles for eco-friendly transportation and the use of high technology devices. Lithium rechargeable batteries are the most promising power sources because of its high energy density but still have a challenge. Graphite is the most widely used anode material in the field of lithium rechargeable batteries due to its many advantages such as good cyclic performances, and high charge/discharge efficiency in the initial cycle. However, it has an important safety issue associated with the dendritic lithium growth on the anode surface at high charging current because the conventional graphite approaches almost 0 V vs $Li/Li^+$ at the end of lithium insertion. Therefore, a fundamental solution is to use an electrochemical redox couple with higher equilibrium potentials, which suppresses lithium metal formation on the anode surface. Among the candidates, $Li_4Ti_5O_{12}$ is a very interesting intercalation compound with safe operation, high rate capability, no volume change, and excellent cycleability. But the insulating character of $Li_4Ti_5O_{12}$ has raised concerns about its electrochemical performance. The initial insulating character associated with Ti4+ in $Li_4Ti_5O_{12}$ limits the electronic transfer between particles and to the external circuit, thereby worsening its high rate performance. In order to overcome these weak points, several alternative synthetic methods are highly required. Hence, in this presentation, novel ways using a synergetic strategy based on 1D architecture and surface coating will be introduced to enhance the kinetic property of Ti-based electrode. In addition, first-principle calculation will prove its significance to design Ti-based electrode for the most optimized electrochemical performance.

  • PDF

Studies on the Sorption and Fixation of Cesium by Vermiculite (II)

  • Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.97-111
    • /
    • 1974
  • The adsorption mechanism of Cs-137 in low level radioactive solution by vermiculite treated with Na ion is studied in order to investigate its effective utilization for the radioactive effluent treatment. The beneficial role of Na-vermiculite is that Na ion can induce the wider c-axis spacing in which Cs ion can be sorbed in vermiculite. Cation exchange capacity and distribution coefficient of cesium seems to be influenced by the variation of c-axis spacing of vermiculite. Comparative identification and detection with the characteristic analyses of X-ray diffraction and electron diffraction patterns, diffrential thermal analysis and electron microscopy of Na-, K- and Cs-vermiculite are studied for the phemomena of Cs adsorption by vermiculite. This importance of the utilization in terms of adsorption and fixation of cesium involving vermiculite is discussed. It is found that the Na-vermiculite is valuable outside charging material for high level radioactive liquid waste storage tank of underground to protect the pollution of the underground water.

  • PDF

Thermal Performance of the Storage Brick Containing Microencapsulated PCM (상변화형 미세캡슐을 함유한 축열블럭의 열성능 특성)

  • Lee, D.G.;Chun, W.G.;Kang, Y.H.;Kwak, H.Y.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 1999
  • The thermal performance of storage brick, containing microencapsulated PCM(phase change material), was investigated for utilization as a floor heating system. Sodium acetate trihydrate($CH_3COONa{\cdot}3H_2O$) was selected for the PCM and was encapsulated. The thermal storage brick was manufactured with mixing cement mortar having 10%, 20% PCM contents, respectively. Four different flow rates and three different cooling temperatures was used in this work for analyzing the heat charging and discharging characteristics of the thermal storage brick. The result showed that cycle time was shortened as the PCM content was increased and as the mass flow rate was increased. The same effect was obtained when the cooling temperature was decreased. For each thermal storage brick the overall heat transfer coefficient(U-value) was constant for a 0% brick, but was increased with time for the bricks containing microencapsulated PCM.

  • PDF

Triboelectrostatic Separation of Mixed Three Kinds of Plastics by a Two-stage Separation Process (2단계(段階) 분리공정(分離工程)에 의한 3종(種) 혼합(混合)플라스틱의 마찰하전(摩擦荷電) 정전선별(靜電選別))

  • Park, Chul-Hyun;Jeon, Ho-Seok;Baek, Sang-Ho;Park, Jai-Koo
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.57-64
    • /
    • 2007
  • Triboelectrostatic separation of mixed three kinds of plastics, PVC, PET and PMMA, in the range of similar gravity has been performed through a two-stage separation process. Polypropylene (PP) and high-impact polystyrene (HIPS) were found to be the most effective materials for a tribo-charger in the separation of PVC, PET and PMMA. In the 1st stage using the PP cyclone charger, PVC grade and recovery depended considerably on the air velocity (10 m/s), the relative humidity (<30%), the electric field (>200 kV/m) and the splitter position (+2 cm from the center) in the triboelelctrostatic separator unit. At an optimum condition a PVC grade of 99.6% and a recovery of 97.5% was achieved. In the 2nd stage using the HIPS cyclone charger, a PMMA grade of 98.3% and a recovery of 97.0% was obtained under the conditions of 10m/s air velocity, over 250 kV/m electric field, central splitter position and less than 40% relative humidity.