Triboelectrostatic Separation of Mixed Three Kinds of Plastics by a Two-stage Separation Process

2단계(段階) 분리공정(分離工程)에 의한 3종(種) 혼합(混合)플라스틱의 마찰하전(摩擦荷電) 정전선별(靜電選別)

  • Park, Chul-Hyun (Korea Institute of Geoscience and Mineral Resources) ;
  • Jeon, Ho-Seok (Korea Institute of Geoscience and Mineral Resources) ;
  • Baek, Sang-Ho (Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Jai-Koo (Hanyang University, Department of Geoenvironmental System Engineering)
  • Published : 2007.10.27

Abstract

Triboelectrostatic separation of mixed three kinds of plastics, PVC, PET and PMMA, in the range of similar gravity has been performed through a two-stage separation process. Polypropylene (PP) and high-impact polystyrene (HIPS) were found to be the most effective materials for a tribo-charger in the separation of PVC, PET and PMMA. In the 1st stage using the PP cyclone charger, PVC grade and recovery depended considerably on the air velocity (10 m/s), the relative humidity (<30%), the electric field (>200 kV/m) and the splitter position (+2 cm from the center) in the triboelelctrostatic separator unit. At an optimum condition a PVC grade of 99.6% and a recovery of 97.5% was achieved. In the 2nd stage using the HIPS cyclone charger, a PMMA grade of 98.3% and a recovery of 97.0% was obtained under the conditions of 10m/s air velocity, over 250 kV/m electric field, central splitter position and less than 40% relative humidity.

유사비중의 범위에 있는 PVC, PET and PMMA 3종 혼합플라스틱의 마찰하전 정전선별이 2단계 분리공정을 통하여 수행되었다. PVC, PET and PMMA의 재질분리에 있어 효과적인 하전장치의 재질은 Polypropylene(PP) 과 high-impact polystyrene(HIPS) 임을 확인하였다. PP 싸이클론 하전장치를 이용한 1단계 분리공정에서, PVC의 품위와 회수율은 공기속도 10 m/s, 전기장의 세기 200 kV/m 이상, 분리대 위치 +2cm, 상대습도 30% 이하의 조건에서 각각 99.6%와 97.5%로 구하였으며, HIPS 싸이크론 하전장치를 이용한 2단계 분리공정으로부터, 공기속도 10 m/s, 전기장의 세기 250 kV/m, 분리대 위치 0cm, 상대습도 40% 이하의 조건에서 PMMA의 품위와 회수율을 각각 97.8%와 95.12%로 구하였다.

Keywords

References

  1. Park, C.H., Jeon, H.S., Park, J.K., 2007: PVC removal from mixed plastics by triboelectrostatic separation, J. Hazar. Mater, 144, pp. 470-476 https://doi.org/10.1016/j.jhazmat.2006.10.060
  2. Jeon, H.S., Park, C.H., Kim, B.G, Park, J.K., 2006: The development of electrostatic separation technique for recycling of life circles waste plastic, J. Korean Inst. Resour. Recy, 15, pp. 28-36
  3. Stephanharmm T., Rothenbacher, K., 2005: Comparison of the recyclability of flame-retarded plastics, Environ. Sci. Technol. 39, pp. 6961-6970 https://doi.org/10.1021/es050767x
  4. Yongkang, H. Schoenung. J., 2006: Economic Analysis of electronic waste recycling modeling the cost and revenue of a materials recovery facility in California, Environ, Sci. Technol., 40, pp. 1672-1680 https://doi.org/10.1021/es0503783
  5. Zhang, S., Forssberg, E., 1997: Mechanical separationoriented characterization of electronic scrap, Resour. Conserv. Recy., 21, pp. 247-269 https://doi.org/10.1016/S0921-3449(97)00039-6
  6. Marcher, J., 1984: Separation and recycling of wire and cable scrap in the cable industry, Wire. J. International, 17, pp. 106-114
  7. Rios, P., stuart, J. A., Grant, E., 2003: Plastics disassembly versus bulk recycling; engineering design for end-of-life electronics resource recovery, Environ. Sci. Technol., 37, pp. 5463-5470 https://doi.org/10.1021/es034675o
  8. Amelia, L. Craighill, Powell, J. C., 1996: Lifecycle assessment and economic evaluation of recycling: a case study, Resour. Conserv. Recy., 17, pp. 75-96 https://doi.org/10.1016/0921-3449(96)01105-6
  9. Reid, L. W., 1996: Plastic incineration versus recycling: a comparison of energy and landfill cost savings, J. Hazard. Mater, 47, pp. 295-302 https://doi.org/10.1016/0304-3894(95)00117-4
  10. Yoon, R.H., Recent development in plastics recycling in the U.S., Processing International Symposium on Establishment of Recsour Recy. Soc., Oct. 2, Seoul, Korea, 2002
  11. American Plastics Council (APC), Nov. 9, Arlington, VA, USA (1999)
  12. Shent, H., Pugh, R.J., Forssberg, E., 1999: A review of plastics waste recycling and the flotation of plastics, Resour. Conserv. Recy, 25, pp. 85-109 https://doi.org/10.1016/S0921-3449(98)00017-2
  13. Van den Broeka, W.H.A.M., et al., 1998: Plastic material identification with spectroscopic near infrared imaging and artificial neural networks, Anal. Chim. Acta, 361, pp. 161-176 https://doi.org/10.1016/S0003-2670(98)00012-9
  14. Dodbiba, G., 2002: Shibayama, Magn. Electrostatic separation of the shredded plastic mixtures using a tribo cyclone. Electr. Sep, 11, pp. 63-92 https://doi.org/10.1080/07313630290002626
  15. Lungu, M., 2004: Electrical separation of plastic materials using the triboelectric effect, Miner. Eng, 17, pp. 69-75 https://doi.org/10.1016/j.mineng.2003.10.010
  16. Kelly, E. G, Sottiswood, D. J., 1989: The theory of electrostatic separations: a review, part. I Fundamentals, Miner. Eng, 2, pp. 33-46 https://doi.org/10.1016/0892-6875(89)90063-0
  17. Castle, G S. P., 1997: Contact charging between insulators, J. Electrost, 40-41, pp. 13-20 https://doi.org/10.1016/S0304-3886(97)00009-0
  18. Park, C.H., Jeon, H.S., Park, J.K., 2006: A study on charging properties and triboelectric series of plastic by tribo-charging, Korea Inst. Geosci. Mater. Resour., 43, pp. 560-569
  19. Yanar, D.K., Kwetkus, B.A., 1995: Electrostatic separation of polymer powders, J. Electrostat, 35, pp. 257-266 https://doi.org/10.1016/0304-3886(94)00044-W
  20. Inculet, I. I. Castle, G S. P. Brown, J. D., 1998: Electrostatic separation of plastics for recycling. Part. Sci. Technol, 16, pp. 91-100 https://doi.org/10.1080/02726359808906787
  21. Matsushita, Y., Mori, N., Sometani, T., 1999: Electrostatic separation of plastics by friction mixer with rotary blades, Electr. Eng. Jap., 127, pp. 33-40 https://doi.org/10.1002/(SICI)1520-6416(199905)127:3<33::AID-EEJ4>3.0.CO;2-V
  22. Fujita, T., et al., Processings of 3th International Symposium on East Asian Recycling Technology, Nov, 1995, pp. 21-24
  23. Higashiyama, Y., Ujiie, Y., Asano, K., 1997: Triboelectrification of plastic particles on a vibrating feeder laminated with a plastic film, J. Electrostat, 42, pp. 63-68 https://doi.org/10.1016/S0304-3886(97)00131-9
  24. Lowell, J., Rose-Innes, A. C., 1980: Contact electrification, Advances In Physics. 29, pp. 947-1023 https://doi.org/10.1080/00018738000101466