• Title/Summary/Keyword: Charging Algorithm

Search Result 176, Processing Time 0.025 seconds

Development of an Automatic External Biphasic Defibrillator System (Biphasic 자동형 제세동기 시스템 개발)

  • Kim, Jung-Guk;Jung, Seok-Hoon;Kwon, Chul-Ki;Ham, Kwang-Geun;Kim, Eung-Ju;Park, Hee-Nam;Kim, Young-Hoon;Heo, Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.119-127
    • /
    • 2004
  • In this paper, an automatic external biphasic defibrillator that removes ventricular fibrillation efficiently with a low discharging energy has been developed. The system is composed of software including a fibrillation detection algorithm and a system control algorithm, and hardware including a high voltage charging/discharging part and a signal processing part. The stability of the developed system has been confirmed through continuous charging/discharging test of 160 times and the detection capability of the real-time fibrillation detection algorithm has been estimated by applying a total of 30 various fibrillation signals. In order to verify the clinical efficiency and safety, the system has been applied to five pigs before and after fibrillation inductions. Also, we have investigated the system efficiency in removing fibrillation by applying two different discharging waveforms, which have the same energy but different voltage levels.

Finding a Minimum Fare Route in the Distance-Based System (거리비례제 요금부과에 따른 최소요금경로탐색)

  • Lee, Mee-Young;Baik, Nam-Cheol;Nam, Doo-Hee;Shin, Seon-Gil
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.101-108
    • /
    • 2004
  • The new transit fare in the Seoul Metropolitan is basically determined based on the distance-based fare system (DBFS). The total fare in DBFS consists of three parts- (1) basic fare, (2) transfer fare, and (3) extra fare. The fixed amount of basic fare for each mode is charged when a passenger gets on a mode, and it proceeds until traveling within basic travel distance. The transfer fare may be added when a passenger switches from the present mode to another. The extra fare is imposed if the total travel distance exceeds the basic travel distance, and after that, the longer distance the more extra fare based on the extra-fare-charging rule. This study proposes an algorithm for finding minimum fare route in DBFS. This study first exploits the link-label-based searching method to enable shortest path algorithms to implement without network expansion at junction nodes in inter-modal transit networks. Moreover, the link-expansion technique is adopted in order for each mode's travel to be treated like duplicated links, which have the same start and end nodes, but different link features. In this study, therefore, some notations associated with modes can be saved, thus the existing link-based shortest path algorithm is applicable without any loss of generality. For fare calculation as next steps, a mathematical formula is proposed to embrace fare-charging process using search process of two adjacent links illustrated from the origin. A shortest path algorithm for finding a minimum fare route is derived by converting the formula as a recursive form. The implementation process of the algorithm is evaluated through a simple network test.

A Study on Automatic Control of Microtunneling System based on Fuzzy Controller (퍼지 제어기를 이용한 터널 굴진기의 자동제어에 관한 연구)

  • 도준형;한정수;강영훈;변증남;남장현;박태동
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.103-112
    • /
    • 2004
  • In this paper, we propose the automatic control algorithm of torque/pipejacking thrust and slurry charging/discharging pressure in the microtunneling system to assist operators assuring the quality of microtunneling construction. To develop this algorithm, we analyze the microtunneling system which is manually controlled by expert and design fuzzy controller. warning system, and halt sensing system The proposed automatic tunneling algorithm shows good tunneling results comparable with those of experts.

Development of an Intelligent Security Robot System for Home Surveillance (가정용 지능형 경비 로봇 시스템 개발)

  • Park, Jeong-Ho;Shin, Dong-Gwan;Woo, Chun-Kyu;Kim, Hyung-Chul;Kwon, Yong-Kwan;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.810-816
    • /
    • 2007
  • A security robot system named EGIS-SR is a mobile security robot through one of the new growth engine project in robotic industries. It allows home surveillance through an autonomous mobile platform using onboard cameras and wireless security sensors. EGIS-SR has many sensors to allow autonomous navigation, hierarchical control architecture to handle lots of situations in monitoring home surveillance and mighty networks to achieve unmanned security services. EGIS-SR is tightly coupled with a networked security environment, where the information of the robot is remotely connected with the remote cockpit and patrol man. It achieved an intelligent unmanned security service. The robot is a two-wheeled mobile robot and has casters and suspension to overcome a doorsill. The dynamic motion is verified through $ADAMS^{TM}$ simulation. For the main controller, PXA270 based hardware platform based on linux kernel 2.6 is developed. In the linux platform, data handling for various sensors and the localization algorithm are performed. Also, a local path planning algorithm for object avoidance with ultrasonic sensors and localization using $StarGazer^{TM}$ is developed. Finally, for the automatic charging, a docking algorithm with infrared ray system is implemented.

Compensation of Unbalanced Phase Currents in Interleaved Bi-directional Converter with DC Link Current Sensed (직류링크 전류를 이용한 인터리브드 양방향 컨버터의 상전류 불균형 보상 방법)

  • Han, Jungho;Choi, Yuhyon;Song, Joongho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.90-97
    • /
    • 2014
  • This paper presents a compensation method of unbalanced phase currents in interleaved bi-directional converters. Phase currents in interleaved bi-directional converter are apt to be unbalanced due to circuit parameter error and switch operation difference. This problem causes the switch element failure and the reduced efficiency of the converter. Therefore, it is necessary that a certain balance control algorithm is provided in interleaved bi-directional converter system. In this paper, a balance control algorithm based on the circular chain control method is proposed. Further, in order to reduce the number of phase current sensors, this paper shows a simple method in which phase currents can be extracted indirectly through a DC-link current sensor in both charging and discharging modes. The validity and the effectiveness of the proposed phase currents balance control algorithm are illustrated through the simulation results.

Battery State Estimation Algorithm for High-Capacity Lithium Secondary Battery for EVs Considering Temperature Change Characteristics

  • Park, Jinho;Lee, Byoungkuk;Jung, Do-Yang;Kim, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1927-1934
    • /
    • 2018
  • In this paper, we studied the state of charge (SOC) estimation algorithm of a high-capacity lithium secondary battery for electric vehicles (EVs) considering temperature characteristics. Nonlinear characteristics of high-capacity lithium secondary batteries are represented by differential equations in the mathematical form and expressed by the state space equation through battery modeling to extract the characteristic parameters of the lithium secondary battery. Charging and discharging equipment were used to perform characteristic tests for the extraction of parameters of lithium secondary batteries at various temperatures. An extended Kalman filter (EKF) algorithm, a state observer, was used to estimate the state of the battery. The battery capacity and internal resistance of the high-capacity lithium secondary battery were investigated through battery modeling. The proposed modeling was applied to the battery pack for EVs to estimate the state of the battery. We confirmed the feasibility of the proposed study by comparing the estimated SOC values and the SOC values from the experiment. The proposed method using the EKF is expected to be highly applicable in estimating the state of the high-capacity rechargeable lithium battery pack for electric vehicles.

Charging of Sensor Network using Multiple Mobile Robots (다중 이동 로봇을 이용한 센서 네트워크의 충전)

  • Moon, Chanwoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.345-350
    • /
    • 2021
  • The maintenance of sensor networks, installed in a wide area has been an issue for a long time. In order to solve this problem, studies to supply energy to a sensor network using a robot has been carried out by several researchers. In this study, for a sensor network consisting of power nodes supplied with energy by multiple robots and sensor nodes around them, we propose a method of allocating a work area using a modified k-means algorithm so that the robots move the minimum distance. Through the simulation study using the energy transfer rate of the robot as a variable, it is shown that nodes of each allocated area can maintain survival, and the validity of the proposed modified k-means algorithm is verified.

Harmonic distortion estimation applicable to a low-end electricity meter for an electric vehicle charger (전기자동차 충전기용 보급형 전력량계에 적용 가능한 고조파 왜곡 추정 알고리즘)

  • Ukhyun, Kim;Kyungeun, Kim;Sangwook, Park;Young Lae, Kim;Jooyoung, Jeon
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.710-713
    • /
    • 2022
  • In this paper, a Goertzel-based algorithm was proposed to calculate the amount of power by estimating the harmonic components generated during charging of the electric vehicle up to a very high order, allowing it to be applied to a low-cos electricity meter with low computing power. Using the proposed algorithm, it is verified through simulation for a simple example signal that even large-order harmonics can be sufficiently considered when wattage is measured.

Energy Storage Application Strategy on DC Electric Railroad System using a Novel Railroad Analysis Algorithm

  • Lee, Han-Sang;Lee, Han-Min;Lee, Chang-Mu;Jang, Gil-Soo;Kim, Gil-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.228-238
    • /
    • 2010
  • There is an increasing interest in research to help overcome the energy crisis that has been focused on energy storage applications in various parts of power systems. Energy storage systems are good at enhancing the reliability or improving the efficiency of a power system by creating a time gap between the generation and the consumption of power. As a contribution to the various applications of storage devices, this paper describes a novel algorithm that determines the power and storage capacity of selected energy storage devices in order to improve upon railroad system efficiency. The algorithm is also demonstrated by means of simulation studies for the Korean railroad lines now in service. A part of this novel algorithm includes the DC railroad powerflow algorithm that considers the mobility of railroad vehicles, which is necessary because the electric railroad system has a distinct distribution system where the location and power of vehicles are not fixed values. In order to derive a more accurate powerflow result, this algorithm has been designed to consider the rail voltage as well as the feeder voltage for calculating the vehicle voltage. By applying the resultant control scheme, the charging or discharging within a specific voltage boundary, energy savings and a substation voltage stabilization using storage devices are achieved at the same time.

Integrated Power Optimization with Battery Friendly Algorithm in Wireless Capsule Endoscopy

  • Mehmood, Tariq;Naeem, Nadeem;Parveen, Sajida
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.338-344
    • /
    • 2021
  • The recently continuous enhancement and development in the biomedical side for the betterment of human life. The Wireless Body Area Networks is a significant tool for the current researcher to design and transfer data with greater data rates among the sensors and sensor nodes for biomedical applications. The core area for research in WBANs is power efficiency, battery-driven devices for health and medical, the Charging limitation is a major and serious problem for the WBANs.this research work is proposed to find out the optimal solution for battery-friendly technology. In this research we have addressed the solution to increasing the battery lifetime with variable data transmission rates from medical equipment as Wireless Endoscopy Capsules, this device will analyze a patient's inner body gastrointestinal tract by capturing images and visualization at the workstation. The second major issue is that the Wireless Endoscopy Capsule based systems are currently not used for clinical applications due to their low data rate as well as low resolution and limited battery lifetime, in case of these devices are more enhanced in these cases it will be the best solution for the medical applications. The main objective of this research is to power optimization by reducing the power consumption of the battery in the Wireless Endoscopy Capsule to make it battery-friendly. To overcome the problem we have proposed the algorithm for "Battery Friendly Algorithm" and we have compared the different frame rates of buffer sizes for Transmissions. The proposed Battery Friendly Algorithm is to send the images on average frame rate instead of transmitting the images on maximum or minimum frame rates. The proposed algorithm extends the battery lifetime in comparison with the previous baseline proposed algorithm as well as increased the battery lifetime of the capsule.