• 제목/요약/키워드: Charge-discharge process

검색결과 202건 처리시간 0.021초

마이크로 프로세서를 이용한 축전지의 병렬 운전 부하분담률 개선에 관한 연구 (A Study on the Improved Load Sharing rate in Paralleled Operated Lead Acid Battery by Using Microprocessor)

  • 이정민
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.493-497
    • /
    • 2000
  • A battery is the device that transforms the chemical energy into the direct-current electrical energy without a mechanical process. Unit cells are connected in series to obtain the required voltage while being connected in parallel to organize capacity for load current. Because the voltage drop down in one set of battery is faster than in two one it may result in the low efficiency of power converter with the voltage drop and cause the system shutdown. However when the system being shutdown. However when the system being driven in parallel a circular-current can be generated,. It is shown that as a result the new batteries are heated by over-charge and over-discharge and the over charge current increases rust of the positive grid and consequently shortens the lifetime of the new batteries. The difference between the new batteries and old ones is the amount of internal resistance. In this paper we can detect the unbalance current using the microprocessor and achieve the balance current by adjusting resistance of each set, The internal resistance of each set becomes constant and the current of charge and discharge comes to be balanced by inserting the external resistance into the system and calculating the change of internal resistance.

  • PDF

Nickel Phosphide Electroless Coating on Cellulose Paper for Lithium Battery Anode

  • Kang, Hyeong-Ku;Shin, Heon-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.155-164
    • /
    • 2020
  • Here we report our preliminary results about nickel phosphide (Ni-P) electroless coating on the surface of cellulose paper (CP) and its feasibility as the anode for lithium (Li) batteries. In particular, CP can act as a flexible skeleton to maintain the mechanical structure, and the Ni-P film can play the roles of both the anode substrate and the active material in Li batteries. Ni-P films with different P contents were plated uniformly and compactly on the microfiber strands of CP. When they were tested as the anode for Li battery, their theoretical capacity per physical area was comparable to or higher than hypothetical pure graphite and P film electrodes having the same thickness. After the large irreversible capacity loss in the first charge/discharge process, the samples showed relatively reversible charge/discharge characteristics. All samples showed no separation of the plating layer and no detectable micro-cracks after cycling. When the charge cut-off voltage was adjusted, their capacity retention could be improved significantly. The electrochemical result was just about the same before and after mechanical bending with respect to the overall shape of voltage curve and capacity.

소듐 이온전지용 주석 음극의 안정화를 위한 PVdF 옥세틱 구조의 영향 (Effect of Auxetic Structure of PVdF on Tin Anode Stability for Na-ion Batteries)

  • 박진수
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.507-513
    • /
    • 2018
  • This study investigates the viability of using a Na-ion battery with a tin(Sn) anode to mitigate the vulnerability caused by volume changes during discharge and charge cycling. In general, the volume changes of carbon material do not cause any instability during intercalation into its layer structure. Sn has a high theoretical capacity of $847mAh\;g^{-1}$. However, it expands dramatically in the discharge process by alloying Na-Sn, placing the electrode under massive internal stress, and particularly straining the binder over the elastic limit. The repeating strain results in loss of active material and its electric contact, as well as capacity decrease. This paper expands the scope of fabrication of Na-ion batteries with Sn by fabricating the binder as an auxetic structure with a unique feature: a negative Poisson ratio (NPR), which increases the resistance to internal stress in the Na-Sn alloying/de-alloying processes. Electrochemical tests and micrograph images of auxetic and common binders are used to compare dimensional and structural differences. Results show that the capacity of an auxetic-structured Sn electrode is much larger than that of a Sn electrode with a common-structured binder. Furthermore, using an auxetic structured Sn electrode, stability in discharge and charge cycling is obtained.

전기적인 특성향상을 위한 리튬이온전지팩 개발 (Development of a new Li-Ion Pack-Battery for improving the electrical properties)

  • 강용구;권현규;서명수;박창용
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.90-95
    • /
    • 2009
  • This paper presents a new lithium ion unit-cell and pack battery by using a new formulation ratio of material. The three types of formulation ratio for the unit-cell were used. The life cycle and basic properties of the lithium ion unit-cell$({\Psi}18{\times}65(mm))$ about one of them were acquired by the charge-discharge experiment. The nominal voltage, nominal capacity and cycle life output of the lithium ion unit-cell is respectively 3.7V, 2.4Ah, and above 500cycle. Pack type lithium ion battery has the size of $29.5{\times}73.5{\times}115(mm)$ and the weight of 300g. As the results, the weight and bulk of lithium ion battery used to a safety lamp were decreased to 1/4 and 1/7. In addition, the comparison of the new lithium ion battery and lead storge battery for confirming the effectiveness of the new lithium ion battery have been performed.

  • PDF

Re-synthesis and Electrochemical Characteristics of LiFePO4 Cathode Materials Recycled from Scrap Electrodes

  • Kim, Hyung Sun;Shin, Eun Jung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.851-855
    • /
    • 2013
  • This paper describes an environmentally friendly process for the recovery of $LiFePO_4$ cathode materials from scrap electrodes by a simple thermal treatment method. The active materials were easily separated from the aluminum substrate foil and polymeric binders were also decomposed at different temperatures ($400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$) for 30 min under nitrogen gas flow. The samples were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman spectroscopy, Thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The electrochemical properties of the recycled $LiFePO_4$ cathode were evaluated by galvanostatic charge and discharge modes. The specific charge/discharge capacities of the recycled $LiFePO_4$ cathode were similar to those of the original $LiFePO_4$ cathode. The $LiFePO_4$ cathode material recovered at $500^{\circ}C$ exhibits a somewhat higher capacity than those of other recovered materials at high current rates. The recycled $LiFePO_4$ cathode also showed a good cycling performance.

탄소 부극에서 초기 충전온도별 부동태 피막 형성에 대한 연구 (Studies on Formation of Passivation Film on KMFC Anode with Initial Charge Temperature)

  • 박동원;김우성;최용국
    • 공업화학
    • /
    • 제16권4호
    • /
    • pp.507-512
    • /
    • 2005
  • 리튬 이온 2차 전지의 부극으로 사용되는 탄소전극은 초기 충전시 전극 표면에 Solid Electrolyte Interphase (SEI)라고 불리는 부동태 피막을 형성한다. 초기 충전과정에서의 용매분해로 형성된 막은 충방전 용량에 큰 영향을 주는 것으로 조사되었다. 본 연구에서는 Kawasaki Mesophase Fine Carbon 부극과 1 M $LiPF_6,EC:DEC$ (1:1, 부피비)에 $Li_2CO_3$를 첨가하여 전극/전해질 계면에서 초기충전 온도에 따라 형성되는 부동태 피막의 전기화학적 특성을 시간대 전압법, 순환 전압-전류법, 임피던스법을 이용하여 조사하였다. 관찰된 결과에 따르면, 용매분해 반응이 일어날 때 리튬 이온의 전도도에 따라 용매분해 전위가 달라졌으며, 저온으로 갈수록 $Li^+$ 이온의 전도성이 떨어져 분해 전위 차이가 나타남을 알았다. 또한 여러 온도조건에서 초기 충전시 형성된 피막의 저항은 온도별로 달라짐을 확인하였다.

급속응고법으로 제작한 Zr기 수소저장합금의 전극특성 (The Electrode Characteristics of the Zr-based Hydrogen Absorbing Alloy Fabricated by the Rapid Solidification Process)

  • 한동수;정원섭;김인곤
    • 한국재료학회지
    • /
    • 제9권4호
    • /
    • pp.386-391
    • /
    • 1999
  • The charge-discharge, the high-rate dischargeability, and the self discharge characteristics of the electrodes composed of rapidly solidified ZrV\ulcornerMn\ulcornerMo\ulcornerNi\ulcorneralloy, which has the form of partial substitution of Mn, Mo, Ni for V in $ZrV_2$ were studied. The alloys were prepared using Arc & RSP(Rapid Solidification Process) at the rotating roller speed of 2000 and 5000 rpm. Some of them were received heat treatment at$ 560 ^{\circ}C$ for 1 hour after the solidification to investigate the effect of the heat treatment. It was fond that cycle life was significantly improved by RSP, whereas discharge capacity, activation rte and high rate dischargeability were decreased compared with the conventional arc melting method. The capacity loss seems to be due to the loss of the crystallinity and the increase of the cycle life ascribed to the presence of the amporphous phase as well as the refined grain size of less than 0.2$\mu\textrm{m}$. Heat treatment of the alloy cooled at 2000 rpm improved the cycle life. In case of the alloys cooled at 5000 rpm, both the discharge capacity and the activation rate were significantly improved by the heat treatment.

  • PDF

The Lithium Ion Battery Technology

  • Lee, Ki-Young
    • Carbon letters
    • /
    • 제2권1호
    • /
    • pp.72-75
    • /
    • 2001
  • The performance of Li-ion system based on $LiCoO_2$ and Graphite is well optimized for the 3C applications. The charge-discharge mode, the manufacturing process, the cell performance and the thermal reactions affecting safety has been explained in the engineering point of view. The energy density of the current LIB system is in the range of 300~400 Wh/l. In order to achieve the energy density higher than 500 Wh/l, the active materials should be modified or changed. Adopting new high capacity anode materials would be effective to improve energy density.

  • PDF

Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동 (Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method)

  • 김성준;임태섭;김봉구;손정훈;정연길
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

정지궤도 위성용 전력공급 모듈의 버스 전압 안정화를 위한 최적동작 제어에 관한 연구 (A Study on Adaptive Operation Control to Stabilize bus Voltage of GEO Satellite Power Supply Module)

  • 안태영;최현수
    • 전자공학회논문지
    • /
    • 제53권2호
    • /
    • pp.123-129
    • /
    • 2016
  • 본 논문에서는 PCU(Power Control Unit)의 성능을 최적화 시킬 수 있는 동작모드를 제안하고 제작하여 그 결과를 보고 하였다. 특히 세 개의 기능별 모듈이 최적의 동작 상태를 유지할 수 있도록 버스의 전압과 연동되게 제어회로를 구성하여 동작 우선순위를 정하고 필요에 따라 자동적으로 동작하도록 최적 동작 제어 방식을 제안하였다. PCU는 태양광 전력을 부하와 연결된 버스에 정전압으로 변환시키는 S3R(Sequential Switching Shunt Regulator)과 보조 에너지 저장장치인 배터리에 잉여 전력을 저장하는 BCR(Battery Charge Regulator) 및 배터리에 충전되어 있던 전력을 부하에 공급하는 BDR(Battery Discharge Regulator)로 구성되어 있다. 세 개의 전력변환 모듈은 위성용 전원장치의 특성상 높은 신뢰성을 유지하기 위해서 각각의 모듈이 병렬로 동작하며, 특히 각 모듈의 기능이 최적의 상태를 유지하기 위해서 안정된 버스 전압이 상시 유지되어야 한다.