• Title/Summary/Keyword: Charge-dipole

Search Result 86, Processing Time 0.028 seconds

The Dipole Moment Derivatives of Methane

  • Kim, Kwan;Park, Cheol-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.380-384
    • /
    • 1986
  • The infrared intensities of $CH_{4}$ and $CD_{4}$ are analyzed. The experimental dipole moment derivatives thus obtained are compared with corresponding values from the molecular orbital calculations. The theoretical results are analyzed for the charge-charge flux-overlap(CCFO) electronic contributions to the dipole derivatives.

Theoretical Analysis of Dipole Moment Derivatives in Fluoromethanes. (II) Difluoromethane

  • Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.1
    • /
    • pp.10-15
    • /
    • 1987
  • The results of an ab initio (6-31G) molecular orbital calculation of the dipole moment derivatives and gas phase IR intensities of difluoromethane are reported. The results are compared with corresponding values obtained from a CNDO calculation. The directions of the dipole derivatives calculated by the two methods agree very well, whereas the intensities differ significantly. The results are also analyzed for the charge-charge flux-overlap electronic contributions to the dipole derivatives.

Theoretical Analysis of Dipole Moment Derivatives in Fluoromethanes. (III) CH$_3$F and CF$_4$

  • Kim, Kwan;Park, Cheol-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.174-179
    • /
    • 1987
  • The results of an ab initio (6-31G) molecular orbital calculations of the dipole moment derivatives and gas phase IR intensities in $CH_3F$ and $CF_4$ are reported. The results are compared with corresponding values obtained from a CNDO calculation. We have also analyzed the theoretical polar tensors into the charge, charge flux, and overlap contributions. The effective term charges of hydrogen atom appeared to be transferable among the fluoromethane molecules.

Meaning and Definition of Partial Charges (부분 전하의 의미와 정의)

  • Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.231-236
    • /
    • 2010
  • Partial charge is an important and fundamental concept which can explain many aspects of chemistry. Since a molecule can be regarded as neclei surrounded by electron cloud, there is no way to define a partial charge accurately. Nevertheless, there have been many attempts to define these seemingly impossible parameters, since they would facilitate the understanding of molecular properties such as molecular dipole moment, solvation, hydrogen bonding, molecular spectroscopy, chemical reaction, etc. Common methods are based on the charge equalization, orbital occupancy, charge density, and electric multipole moments, and electrostatic potential fitting. Methods based on the charge equalization using electronegativity are very fast, and therefore they have been used to study many compounds. Methods to subdivide orbital occupancy using basis set conversion, relies on the notion that molecular orbitals are composed of atomic orbitals. The main idea is to reduce overlap integral between two nuclei using converted orthogonal basis sets. Using some quantum mechanical observables like electrostatic potential or charge multipole moments. Using potential grids obtained from wavefunction, partial charges can be fitted. these charges are most useful to describe intermolecular electrostatic interactions. Methods to using dipole moment and its derivatives, seems to be sensitive the level of theory, Dividing electron density using density gradient being the most rigorous theoretically among various schemes, bears best potential to describe the charge the most adequately in the future.

Dipole Moment Derivatives and Infrared Intensities in Chloromethanes

  • Kim, Kwan;Kim, Hyun-Sik;Kim, Myung-Soo;Kim, Ho-Jing
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.161-167
    • /
    • 1989
  • The results of ab initio(MP2/6-31G) molecular orbital calculations of the dipole moment derivatives and gas phase IR intensities in chloromethanes are reported. The theoretical polar tensors are analyzed into the net charge, charge-flux, and overlap contributions. The charge-flux contribution was found to be dominant in the Cl atom polar tensor, while the net charge effect was the most prominent contribution for the H atom polar tensor. The Cl atom polar tensor appeared, in a good approximation, to be transferable among various chloro molecules. On the other hand, for the prediction of IR spectra of complex hydrocarbons containing chlorine atoms, some empirical adjustment of the H-atom polar tensor seemed to be made depending on the number of Cl atoms bound to the certain carbon atom.

Ultrafine Particle Collection Using an Electret Fiber with a Dipole Charge Distribution (쌍극자전하분포를 가진 정전섬유를 이용한 대전된 초미립자의 집진)

  • Lee Myong-Hwa;Otani Yoshio;Kim Jong-Ho;Kim Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.145-153
    • /
    • 2005
  • An electret fiber with a dipole charge distribution was used to capture charged ultrafine particles in this study. Brownian diffusion and Coulombic force are the dominant collection mechanisms in the electret filtration of charged ultrafine particles. The interaction between Brownian diffusion and Coulombic force for the deposition of ultrafine particles onto a dipolarly charged fiber is studied by solving the convective diffusion equation including Coulombic force as an external force, and the numerical results are compared with the experimental data. As a result, it is shown that there is a negative interaction between Brownian diffusion and Coulombic force, i.e., Coulombic capture efficiency is reduced with decreasing Pe. These results suggest that Brownian diffusion and Coulombic capture efficiency, $\eta$$_{CD}$ is not a simple sum of Brownian diffusion efficiency, $\eta$$_{D}$ and Coulombic capture efficiency, $\eta$$_{C}$.

Poly-gate Quantization Effect in Double-Gate MOSFET (폴리 게이트의 양자효과에 의한 Double-Gate MOSFET의 특성 변화 연구)

  • 박지선;이승준;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.17-24
    • /
    • 2004
  • Quantum effects in the poly-gate are analyzed in two dimensions using the density-gradient method, and their impact on the short-channel effect of double-gate MOSFETs is investigated. The 2-D effects of quantum mechanical depletion at the gate to sidewall oxide is identified as the cause of large charge-dipole formation at the corner of the gate. The bias dependence of the charge dipole shows that the magnitude of the dipole peak-value increases in the subthreshold region and there is a large difference in carrier and potential distribution compared to the classical solution. Using evanescent-nude analysis, it is found that the quantum effect in the poly-gate substantially increases the short-channel effect and it is more significant than the quantum effect in the Si film. The penetration of potential contours into the poly-gate due to the dipole formation at the drain side of the gate corner is identified as the reason for the substantial increase in short-channel effects.

Dipole Moment Derivatives and Infrared Intensities of SiH$_4$ and SiD$_4$

  • Kim, Kwan;Lee, Hwi-Geon
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 1985
  • The complete neglect of differential overlap (CNDO/2) approximate wavefunctions have been applied to select the preferred signs for the dipole moment derivatives of SiH$_{4}$ and SiD$_{4}$ in conjunction with the experimental alternatives. The apparent sign discrepancy from earlier report has been identified. The effective atomic charge for hydrogen was found to be X$_{H}$/e = 0.229, more than two times larger in comparison with the values of typical hydrocarbons like CH$_{4}$. The anomalously large effective hydrogen charge was interpreted based on a quantum mechanical model as well as the value of atom anisotropy relative to effective atomic charge.

Electret Characteristics of polyethylene terephthalate for electret installation (전기설비용 polyethylene terephthalate의 electret 특성연구)

  • 국상훈;서장수
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.3
    • /
    • pp.78-85
    • /
    • 1996
  • This paper experience the mechanism for the electret of polyethyleneterephthalate(PET) by using surface potentail measurement means. We investigated the internal charge production and becoming week by evaporating electrode in sample structure of electret coexist with hetero charge and homo charge, as the study based on two charge theory. We expects that the hetero charge consists of the dipole and ion displacement of internality, the homo charge consists of injected charge of externality.

  • PDF