• 제목/요약/키워드: Charge transfer compound

검색결과 33건 처리시간 0.037초

2-amino-3-[(E)-4-(diethylamino)-2-alkoxy-benzylideneamino]- fumaronitrile 유도체 ICT 화합물의 결정 구조

  • Kim, Byung-Soon;Matsumoto, Shinya;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 한국염색가공학회 2011년도 제44차 학술발표회
    • /
    • pp.62-62
    • /
    • 2011
  • Intramolecular charge transfer (ICT) system has received great attentions due to their promising optoelectronic properties For the efficient ICT of the chromophore, their organic compound mainly consists of strong electron donors (e.g. $NR_2$ or OR groups) and acceptors (e.g. CN or $NO_2$ groups). According to the molecular design and synthesis, the ICT compounds can be extended in many application fields. In this study, we have synthesized ICT compounds having a strong electron acceptor and donor. These novel ICT compounds were easily synthesized by a previously described method with some modifications. Their single crystals were grown and their structures were solved and described in this presentation.

  • PDF

Optical absorption of $Mg_{0.15}Zn_{0.85}Te$ and $Mg_{0.15}Zn_{0.85}Te:Co^{2+}$ single crystal ($Mg_{0.15}Zn_{0.85}Te$$Mg_{0.15}Zn_{0.85}Te:Co^{2+}$ 단결정의 광흡수 특성)

  • 전용기
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제9권2호
    • /
    • pp.180-184
    • /
    • 1999
  • The single crystals of $Mg_{0.15}Zn_{0.85}Te$ and $Mg_{0.15}Zn_{0.85}Te:Co^{2+}$(0.001%) were grown by vertical Bridgman method. Optical absorption properties of this compound were studied. As a result of the optical absorption spectra of $Mg_{0.15}Zn_{0.85}Te$, absorption peaks were related to exciton and the exciton level redshifts with increasing temperature, and temperature coefficient given to the value of $-5.8{\times}10^{-4}\;eV/K$ for the temperature range above 100 K. in the $Mg_{0.15}Zn_{0.85}Te:Co^{2+}$(0.001%) single crystal, the intracenter transitions due to $Co^{2+}$ ions were detected for $A-band:^4A_2(^4F) {\to}^4T_1(^4F),\; B-band:\; ^4A_2(^4F){\to}^4T_1(^4P)$, and the charge transfer transition near the absorption edge was observed in the wavelength range of 500 to 800 nm. According to the crystal field theory and Lucovsky formula, the crystal field parameter, Racah parameter and charge transfer energy were determined.

  • PDF

Syntheses, Structures and Luminescent Properties of Two Novel M(II)-Phen-SIP Supramolecular Compounds (M = Co, Ni)

  • Zhu, Yu-Lan;Shao, Shuai;Ma, Kui-Rong;Tang, Xue-Ling;Cao, Li;Zhao, Hui-Chao
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1259-1263
    • /
    • 2012
  • Two metal compounds, $[Co(phen)_2(H_2O)_2]{\cdot}2H_2SIP{\cdot}2H_2O$ 1 and $[Ni(phen)_3]{\cdot}2H_2SIP{\cdot}3H_2O$ 2, have been obtained by incorporating 1,10-phenanthroline (phen) and 5-sulfoisophthalic acid monosodium salt ($NaH_2SIP$) ligands under hydrothermal conditions. Meanwhile, the two compounds were characterized by element analysis, IR, XRD, TG-DTA and single-crystal X-ray diffraction. Both 1 and 2 present 3D supramolecular structures via O-H${\cdots}$O hydrogen bond interactions. Luminescent properties for 1 and 2 were also studied. The compound 1 has two fluorescence emission peaks centered at 398 nm attributed to the intraligand emission from the SIP ligand and at 438 nm assigned to the combined interaction of intraligand ${\pi}^*-{\pi}$ transitions of the phen ligand and ligand-to-metal-charge-transfer (LMCT) transitions (${\lambda}_{ex}$ = 233 nm). The compound 2 shows one emission band centered at 423 nm with a shoulder peak at 434 nm which may be originated from the intraligand ${\pi}^*-{\pi}$ transitions of the phen ligand (${\lambda}_{ex}$ = 266 nm).

Local Structure Refinement of the $BaFe_{1-x}Sn_xO_{3-y}$ System with Fe K-Edge X-Ray Absorption (XANES/EXAFS) Spectroscopy

  • 김민규;곽기섭;로권선;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권7호
    • /
    • pp.743-749
    • /
    • 1997
  • Local structure refinement of the BaFe1-xSnxO3-y system (x=0.00-0.50) has been carried out with Fe K-edge x-ray absorpion spectroscopic studies. It is found out that the Fe ions are placed in two different symmetric sites such as tetrahedral and octahedral sites in the compounds by comparison with Fe K-edge x-ray absorption near edge structure (XANES) spectrum of the γ-Fe2O3 compound as a reference. Small absorption peaks of dipole-forbiden transitions appear at a pre-edge region of 7111 eV due to the existence of Fe ions in the tetrahedral and octahedral sites. The peak intensity decreases with the substitution amount of Sn ion. Three different absorption peaks of 1s→4p dipole-allowed transition appear on the energy region between 7123 and 7131 eV. The peaks correspond to 1s→4p main transition of Fe ions in tetrahedral and octahedral sites and 1s→4p transition followed by the shakedown process of ligand to metal charge transfer. The bond distances between Fe ions in the tetrahedral site and nearest neighboring oxygen atom (Fe-4O), and those in octahedral site (Fe-6O) are determined with the extended x-ray absorption fine structure (EXAFS) analysis. Two different interatomic distances increase with the substitution amount of Sn ion and also the bond lengths of Fe-4O are shorter than those of Fe-6O in all compounds.

Kinetics and Mechanism of the Aminolysis of Benzenesulfonyl, Benzoyl and Benzyl Halides

  • Byung Choon Lee;Dong Sook Sohn;Ji Hyun Yoon;Sun Mo Yang;Ikchoon Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권5호
    • /
    • pp.621-625
    • /
    • 1993
  • Kinetic studies are conducted for the reactions of Y-benzoyl, Y-benzenesulfonyl and Y-benzyl halides with X-anilines in acetonitrile, and the transition state (TS) structures and their variations with substituents X and Y are discussed. The magnitude of the cross-interaction constants, $\rho$xy, is the largest and the inverse secondary kinetic isotope effect (SKIE), $k_H/k_D$ < 1.0, with deuterated aniline nucleophiles is the smallest for benzoyl fluoride reflecting the tightest TS for this compound. The SKIEs for sulfonyl halides are relatively large due to a relatively large, diffuse nature of the reaction center, S, causing weaker steric hindrance to the vibrations of the two N-H(D) bonds. For benzoyl and sulfonyl halides, the trends in $k_H/k_D$ and $Ir_XI$ variations with $\sigma$Y contradict each other, which is rationalized by the negative charge accumulation on the reaction center, CO and SO$_2$, causing inefficient transfer for the substrate with an electron donating substituent.

Synthesis and Properties of Diarylamino-Substituted Linear and Dendritic Oligoquinolines for Organic Light-Emitting Diodes

  • Lee, Ho-Joon;Xin, Hao;Park, Seong-Min;Park, Seog-Il;Ahn, Taek;Park, Dong-Kyu;Jenekhe, Samson A.;Kwon, Tae-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1627-1637
    • /
    • 2012
  • The coupling reaction between 5-bromo-3-phenylbenzo[c]isoxazole and diphenylamine followed by further condensation with a mono-, di- or ter-acetyl aromatic compound in the presence of diphenyl phosphate at $145^{\circ}C$ gave a novel asymmetric diarylquinolines, oligoquinolines with diphenylamine endgroups, and a first generation quinoline dendrimer in 41-82% isolated yield. The electrochemical and photophysical properties of the oligoquinolines were characterized by cyclic voltammograms (CVs) and spectroscopy. All the quinolines emit bright sky blue light due to charge transfer from quinoline group to diphenly amine with very high quantum efficiency (> 90%). Organic light-emitting diodes (OLEDs) were fabricated using these quinolines as emitting materials. Among different device architectures explored, OLEDs with a structure of ITO/PEDOT (40 nm)/TAPC (15 nm)/D-A quinoline (40 nm)/TPBI (30 nm)/LiF (1 nm)/Al using TAPC as an electron blocking layer and TPBI as a hole blocking layer gave the best performance. A high external quantum efficiency in the range of 1.2-2.3% were achieved in all the quinolines with the best performance in BBQA(5). Our results indicate diarylamino-substituted oligoquinoline and dendrimer are promising materials for OLEDs applications.

Strategic design for oxide-based anode materials and the dependence of their electrochemical properties on morphology and architecture

  • Gang, Yong-Muk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.73-73
    • /
    • 2012
  • Modern technology-driven society largely relies on hybrid electric vehicles or electric vehicles for eco-friendly transportation and the use of high technology devices. Lithium rechargeable batteries are the most promising power sources because of its high energy density but still have a challenge. Graphite is the most widely used anode material in the field of lithium rechargeable batteries due to its many advantages such as good cyclic performances, and high charge/discharge efficiency in the initial cycle. However, it has an important safety issue associated with the dendritic lithium growth on the anode surface at high charging current because the conventional graphite approaches almost 0 V vs $Li/Li^+$ at the end of lithium insertion. Therefore, a fundamental solution is to use an electrochemical redox couple with higher equilibrium potentials, which suppresses lithium metal formation on the anode surface. Among the candidates, $Li_4Ti_5O_{12}$ is a very interesting intercalation compound with safe operation, high rate capability, no volume change, and excellent cycleability. But the insulating character of $Li_4Ti_5O_{12}$ has raised concerns about its electrochemical performance. The initial insulating character associated with Ti4+ in $Li_4Ti_5O_{12}$ limits the electronic transfer between particles and to the external circuit, thereby worsening its high rate performance. In order to overcome these weak points, several alternative synthetic methods are highly required. Hence, in this presentation, novel ways using a synergetic strategy based on 1D architecture and surface coating will be introduced to enhance the kinetic property of Ti-based electrode. In addition, first-principle calculation will prove its significance to design Ti-based electrode for the most optimized electrochemical performance.

  • PDF

Synthesis and Characterization of Molybdeum Complexes with Schiff-Bases(II), Dioxobis(N-aryl-3-methoxysalicyaldiminato) Molybdenum(VI) Complexes (몰리브덴의 시프-염기착물의 합성과 그 성질 (제2보). 다이옥소비스(질소-아릴-3-메톡시살리실알디미나토)몰리브데늄(VI) 착물)

  • O, Sang O;Gu, Bon Gwon
    • Journal of the Korean Chemical Society
    • /
    • 제29권3호
    • /
    • pp.257-264
    • /
    • 1985
  • Dioxobis(3-methoxysalicyaldehydato)molybdeum(VI) complex has been synthesized by reactions of 3-methoxysalicylaldehyde and ammonium paramolybdate in methanol solution. With appropriate primary amine, the resulting complex gave schiff-base complexes, MoO$_2$(CH$_3$O-sal-N-R)$_2$ in which C=O oxide ligands had been replaced by nitrogen. The properties and possible molecular structure of these complexes were discussed by elemental analysis, spectroscopic studies and electric conductivities measurements. It was found that the Mo(VI) complexes contain a cis-MoO$_2$ group since their infrared spectra two Mo=O band at about 900cm$^{-1}$ and the combining ratios for MoO$_2$-ligand are 1 : 2. Also, electronic spectra of molybdenyl complexes assigned to ligand-to-metal charge transfer transition. All of these complexes are yellow or orange, depolar compound and slightly soluble in alcohol, dichloromethane, chloroform and N,N-dimethylformamide.

  • PDF

Mixed Carbon/Polypyrrole Electrodes Doped with 2-Naphthalenesulfonic Acid for Supercapacitor (2-Naphthalenesulfonic Acid로 도핑된 혼합카본/폴리피롤을 이용한 Supercapacitor용 전극)

  • Jang, In-Young;Kang, An-Soo
    • Korean Chemical Engineering Research
    • /
    • 제43권3호
    • /
    • pp.425-431
    • /
    • 2005
  • New type of supercapacitor using high surface area activated carbons mixed with high conductivity polypyrrole (Ppy) has been prepared in order to achieve low impedance and high energy density. Mixed carbons of BP-20 and MSP-20 were used as the active electrode material, and polypyrrole doped with 2-naphthalenesulfonic acid (2-NSA) and carbon black (Super P) as conducting agents were added to activated carbons in order to enhance good electric conductivity. Electrodes prepared with the activated electrode materials and the conducting agents were added to a solution of organic binder [P(VdF-co-HFP) / NMP]. The ratio of optimum electrode composition was 78 : 17 : 5 wt.% of (MSP20 : BP-20=1 : 1), (Super P : Ppy=10 : 7) and P(VdF-co-HFP) respectively. The performance of unit cell with addition of 7 wt% Ppy have shown specific capacitance of 28.02 F/g, DC-ESR of $1.34{\Omega}$, AC-ESR of $0.36{\Omega}$, specific energy of 19.87 Wh/kg and specific power of 9.77 kW/kg. With addition of Ppy, quick charge-discharge of unit cell was possible because of low ESR, low charge transfer resistance and quick reaction rate. And good stability up to 500 chargedischarge cycles were retained about 80% of their original capacity. It was concluded that the specific capacitance originated highly from compound phenomena of the pseudocapacitance by oxidation-reduction of polypyrrole and the nonfaradaic capacitance by adsorption-desorption of activated carbons.

Structural and optical properties of Ni-substituted spinel $LiMn_2O_4$ thin films (니켈 치환된 스피넬 LiMn2O4 박막의 구조적, 광학적 성질)

  • Lee, Jung-Han;Kim, Kwang-Joo
    • Journal of the Korean Vacuum Society
    • /
    • 제15권5호
    • /
    • pp.527-533
    • /
    • 2006
  • Spinel $LiNi_xMn_{2-x}O_4$ thin films were synthesized up to x = 0.9 by a sol-gel method employing spin-coating. The Ni-substituted films were found to maintain cubic structure at low x but to exhibit tetragonal structure for $x{\geq}0.6$. Such cubic-tetragonal phase transition indicates that $Ni^{3+}(d7)$ ions with low-spin $(t_{2g}^6,e_g^1)$ state occupy the octahedral sites of the compound, thus being subject to the Jahn-Teller distortion. By x-ray photoelectron spectroscopy both $Ni^{2+}$ and $Ni^{3+}$ ions were detected. Optical properties of the $LiNi_xMn_{2-x}O_4$ films were investigated by spectroscopic ellipsometry (SE) in the visible?ultraviolet range. The measured dielectric function spectra by SE mainly consist of broad absorption structures attributed to charge-transfer (CT) transitions, $O^{2-}(2p){\rightarrow}Mn^{4+}(3d)$ for 1.9 $(t_{2g})$ and $2.8{\sim}3.0$ eV $(e_g)$ structures and $O^{2-}(2p){\rightarrow}Mn^{3+}(3d)$ for 2.3 $(t_{2g})$ and $3.4{\sim}3.6$ eV $(e_g)$ structures. Also, sharp absorption structures were observed at about 1.6, 1.7, and 1.9 eV, interpreted as due to d-d crystal-field transitions within the octahedral $Mn^{3+}$ ion. The strengths of these absorption structures are reduced by the Ni substitution. Rapid reduction of the CT transition strength involving the eg states for x = 0.6 is attributed to the reduced wavefunction overlap between the $e_g$ and the $O^{2-}(2p)$ states due to the tetragonal extension of the lattice constant by the Jahn-Teller effect.