Optical absorption of $Mg_{0.15}Zn_{0.85}Te$ and $Mg_{0.15}Zn_{0.85}Te:Co^{2+}$ single crystal

$Mg_{0.15}Zn_{0.85}Te$$Mg_{0.15}Zn_{0.85}Te:Co^{2+}$ 단결정의 광흡수 특성

  • Published : 1999.04.01

Abstract

The single crystals of $Mg_{0.15}Zn_{0.85}Te$ and $Mg_{0.15}Zn_{0.85}Te:Co^{2+}$(0.001%) were grown by vertical Bridgman method. Optical absorption properties of this compound were studied. As a result of the optical absorption spectra of $Mg_{0.15}Zn_{0.85}Te$, absorption peaks were related to exciton and the exciton level redshifts with increasing temperature, and temperature coefficient given to the value of $-5.8{\times}10^{-4}\;eV/K$ for the temperature range above 100 K. in the $Mg_{0.15}Zn_{0.85}Te:Co^{2+}$(0.001%) single crystal, the intracenter transitions due to $Co^{2+}$ ions were detected for $A-band:^4A_2(^4F) {\to}^4T_1(^4F),\; B-band:\; ^4A_2(^4F){\to}^4T_1(^4P)$, and the charge transfer transition near the absorption edge was observed in the wavelength range of 500 to 800 nm. According to the crystal field theory and Lucovsky formula, the crystal field parameter, Racah parameter and charge transfer energy were determined.

수집 Bridgman 법을 이용하여 $Mg_{0.15}Zn_{0.85}Te$$Mg_{0.15}Zn_{0.85}Te:Co^{2+}$(0.001%) 단결정을 성장시켰다. 성장된 시료들에 대하여 광흡수 특성을 연구하였다. 광흡수결과 $Mg_{0.15}Zn_{0.85}Te$단결정에서는 exciton과 관련된 흡수 peak들이 나타났으며, 이 peak들은 온도증가와 함께 장파장쪽으로 이동하였고, 100K이상의 온도에서 excitionic band gap의 온도계수 $-5.8{\times}10^{-4}\;eV/K$eV/K 이었다. $Mg_{0.15}Zn_{0.85}Te$ : $Co^{2+}$단결정에서는 $Co^{2+}$이온에 기인된 $A-band:^4A_2(^4F) {\to}^4T_1(^4F),\; B-band:\; ^4A_2(^4F){\to}^4T_1(^4P)$의 intracenter 전이와 흡수단 부근에서 charge transfer에 기인한 photoionization transition에 관련된 C-band를 6--~770nmdnk 파장영역에서 관측하였다. 이들을 결정장 이론과 Lucovsky formular에 의해 결정장 매개변수와 Racah 매개변수, 전하이동 에너지 값을 결정하였다.

Keywords

References

  1. J. Appl. Phys. v.75 J. Petruzzello;J. Gaines;P. van der Sluis
  2. Jpn. J. Appl. Phys. v.33 S. Itoh;N. Nakayama;S. Matsumoto;M. Nagai;K. Nakano;M. Ozawa;H. Okuyama;S. Tomiya;T. Ohata;M. Ikeda;A. Ishibashi;Y. Mori
  3. J. Crystal Growth. v.159 A. Ishibashi
  4. J. Electronic Materials. v.9 G. Revel;G.L. Pastol;J.C. Rouchaud;M. Fedoroff;J.C. Guillaume;J. Chevallier;J.F. Rommeluere
  5. J. Electrochem, Soc. v.118 S.G. Parker;A.R. Reinberg;J.E. Pinnell;W. C. Holton
  6. Phys. Rev. v.113 G.A. Saum;E.B. Hensley
  7. J. Crystal Growth. v.9 A. Kuhn;A. Chevy;M.-J. Naud
  8. J. Appl. Phys. v.78 Michel Luttmann;Franocis Bertin;Amal Chabli
  9. J. Crystal Growrh. v.131 A. Waag;H. Heinke;S. Scholl;C.R. Becker;G. Landwehr
  10. J. Appl. Phys. v.75 A. Waag;G. Bacher;A. Jakobs;A. Forchel;G. Landwehr
  11. Phys. Stat. Sol. (b) v.99 A. Laugier;B. Montegu;D. Barbier;J. Chevallier;J.C. Guillaume;K. Somogyi
  12. J. Mat. Sci. v.20 F. EL Akkad;S. Demian;J. Chevallier
  13. IEEE Transactions on Electron Devices v.ED-26 Karoly Somogyi;J. Chevallier;J.F. Rrommeluere;Jean Marine;B. Schaub
  14. J. Chem. Phys. v.36 H.A. Weakliem
  15. J. De Physique. v.39 L.K. Vodopyanov;E.A. Vinogradov;N.N. Melink;V.G. Platnitchenko;J. Chevallier;J.C. Guillaume
  16. Solid State Commun. v.106 Chang-Sun Yoon;Byong-Ho Kim;Deok-joon Cha;Young-Sil Kim;Sang-Jo Chung;Jeung-Gon Ko;Chang-Dae Kim;Hong-Lee Park;WhaTek Kim
  17. Phys. Rev. v.160 J.M. Baranowski;J.W. Allen;G.L. Pearson
  18. J. Lumin. v.18 A. P. Radlinski
  19. Sov. Phys. Semicond. v.18 Yu. P. Gnatenko;A.I. Ahmurko;I.V. Potykevich;I.A. Farina
  20. Ph. D. Thesis Y.K. Jun
  21. Phys. Rev. v.156 R.E. Nahory;H.Y. Fan
  22. Phys. Rev. v.12 J. Camassel;D. Auvergne