• Title/Summary/Keyword: Charge penetration

Search Result 98, Processing Time 0.031 seconds

Material Properties Evaluation of Cement Mortar Mixed with Organic/Inorganic Combined Water-repellent (유/무기 복합 발수제를 혼입한 모르타르의 재료특성 평가)

  • Kim, Wan-Su;Yoon, Chang-Bok;Cho, In-Sung;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.50-58
    • /
    • 2020
  • When the concrete surface layer is damaged, The method of impregnating the concrete surface with a water repellent cannot secure the expected durability. Recently, various waterproofing and water-repellent materials were mixed into concrete or mortar to secure water repellency even inside cracks, but compressive strength was greatly reduced. In order to overcome the decrease in compressive strength, there has not yet been a study using the merits of organic and inorganic materials at the same time, so in this study, the physical properties and water repellency performance were evaluated by mixing an organic/inorganic composite water repellent appropriately mixed with an organic and inorganic material into the mortar. When mixed with organic/inorganic water repellent, the flow and air content were reduced by about 10% and 50% compared to the Liquid specimen. In the case of the P6L1 specimen, it was confirmed that the compressive strength decreased by about 3.5% compared to the non-mixed mortar at 39.5 MPa, the same as the existing water repellent, Powder. Water-repellent performance The organic-inorganic composite water repellent mixture specimen confirmed higher water repellency than the existing water repellent mixture powder, and the chloride penetration resistance evaluation result showed that the organic-inorganic composite water repellent mixture specimen reduced the passing charge by about 45% compared to the non-mixed mortar. In summary, it is judged that the P5L1 organic/inorganic composite water repellent mixed with a powder water repellent and a liquid water repellent in a ratio of 5:1 is the most reasonable to prevent the decrease in compressive strength and secure water repellency.

Evaluation of Relationship between Strength and Resistance to Chloride in Concrete Containing Fly Ash with Ages (Fly Ash를 혼입한 콘크리트의 재령에 따른 강도와 염화물 저항능력간의 상관관계 평가)

  • Yoon, Yong-Sik;Park, Jae-Sung;Hwang, Chul-Sung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.53-60
    • /
    • 2017
  • Fly ash(FA) which is a byproduct in the coal combustion in thermal power plant contributes to pore structure densification due to pozzolanic reaction, and this leads to long-term strength development and excellent resistance to chloride penetration. In the work, compressive strength and chloride resistance in OPC(Ordinary Portland Cement) and FA-based concrete are evaluated, and the relationships are investigated considering ages. For the work, 3 different W/B (Water to Binder) ratios of 37%, 42%, and 47% are prepared, and 3 substitution ratio of fly ash(0%, 30%, and 50%) are considered as well. At the age of 28 days and 180 days, test results of compressive strength, diffusion coefficients based on Tang's method, and passed charges referred to ASTM C 1202 and KS F 2711 are obtained. With increasing replacement ratio of FA and decreasing W/B, the resistances to chlorides(diffusion coefficient and passed charge) are improved, and the results at the age of 180 days decrease to only 15% level at the age of 28 days due to pozzolanic reaction in FA 50 mixture, which shows that resistance to chloride is much dependent on age effect than strength development. After 180 days, more clear linear relationships are observed between strength and resistance to chloride.

Evaluation of Chloride Behavior and Service Life in Long-Term Aged FA Concrete through Probabilistic Analysis (장기재령 FA 콘크리트에 대한 염화물 거동 및 확률론적 염해 내구수명 평가)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.276-285
    • /
    • 2020
  • In this study, accelerated chloride diffusion tests were performed on OPC(Ordinary Portland Cement) and FA(Fly Ash) concrete considering three levels o f W/B(Water to Binder) ratio o n 1,095 curing days. The accelerated chloride diffusion coefficient and the passed charge were evaluated in accordance with Tang's method and ASTM C 1202, and the resistance performance to chloride attack improved over time. FA concrete showed excellent resistance performance against chloride penetration with help of pozzolanic reaction. As the result of the passed charge, FA concrete showed durability improvement, "low" grade to "very low" grade, but OPC concrete changed "moderate" grade to "low" grade at 1,095 curing days. After assuming the design variables used for durability design as normal distribution functions, the service life of each case was evaluated by the probabilistic analysis method based on MCS(Monte Carlo Simulation). In FA concrete, the increase of probability of durability failure was lower than that of OPC concrete with increasing time, because the time-dependent coefficient of FA concrete was up to 3.2 times higher than OPC concrete. In addition, the service life by probabilistic analysis was evaluated lower than the service life by deterministic analysis, since the target probability of durability failure was set to 10%. It is considered that more economical durability design will be possible if the mo re suitable target probability of durability failure is set for various structures through researches on actual conditions and indoor tests under various circumstances.

Application of multimodal surfaces using amorphous silicon (a-Si) thin film for secondary ion mass spectrometry (SIMS) and laser desorption/ionization mass spectrometry (LDI-MS)

  • Kim, Shin Hye;Lee, Tae Geol;Yoon, Sohee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.384.1-384.1
    • /
    • 2016
  • We reported that amorphous silicon (a-Si) thin film provide sample plate exhibiting a multimodality to measure biomolecules by secondary ion mass spectrometry (SIMS) and laser desorption/ionization mass spectrometry (LDI-MS). Kim et al.1 reported that a-Si thin film were suitable to detect small molecules such as drugs and peptides by SIMS and LDI-MS. Recently, bacterial identification has been required in many fields such as food analysis, veterinary science, ecology, agriculture, and so on.2 Mass spectrometry is emerging for identifying and profiling microbiology samples from its advantageous characters of label-free and shot-time analysis. Five species of bacteria - S. aureus, G. glutamicum, B. kurstaki, B. sphaericus, and B. licheniformis - were sampled for MS analysis without lipid extraction in sample preparation steps. The samples were loaded onto the a-Si thin film with a thickness of 100 nm which did not only considered laser-beam penetration but also surface homogeneity. Mass spectra were recorded in both positive and negative ionization modes for more analytical information. High reproducibility and sensitivity of mass spectra were demonstrated in a mass range up to mass-to-charge ratio(m/z) 1200 by applying the a-Si thin film in mentioned above MS. Principle component analysis (PCA) - a popular statistical analysis widely used in data processing was employed to differentiate between five bacterial species. The PCA results verified that each bacterial species were readily distinguished and differentiated effectively from our MS approach. It shows a new opportunity to rapid bacterial profiling and identification in clinical microbiology. More details will be discussed in the presentation.

  • PDF

Performance of cement concrete pavement incorporating mineral admixtures (광물질혼화재를 적용한 시멘트콘크리트 포장의 성능 평가)

  • Lee, Seung-Tae;Lee, Da-Hyun;Lee, Jae-Jun
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.113-119
    • /
    • 2010
  • This study presents experimental findings on the performance of cement concrete pavement incorporating mineral admixtures such as ground granulated blastfurnace slag and silica fume. Flexural strength, compressive strength, charge passed, diffusion coefficient of chloride ions and initial surface absorption of cement concrete pavement incorporating mineral admixtures were periodically measured and the corresponding results were compared to those of plain concrete pavement. As a result, strength behaviors of concrete pavement were dependent on the types of mineral admixtures. However, it was true that incorporation of silica fume had a beneficial effect on compressive strength development. Furthermore, the application of mineral admixtures led to a lower diffusion coefficient of chloride ions compared to plain concrete pavement. Based on the experimental results, the present study would be helpful to design high-performance cement concrete pavement.

Calcitonin Transport through Skin Using Iontophoresis

  • Kim, Kyung-Min;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.1
    • /
    • pp.9-17
    • /
    • 2011
  • The objective of this work is to study transdermal delivery of calcitonin using iontophoresis and to evaluate various factors which affect the transdermal transport. We have studied the effect of polarity, current density, drug concentration, penetration enhancers (isopropyl myristate [IPM] and ethanol) and laser treatment on transdermal flux and the results were compared. We also investigated the iontophoretic flux from microemulsions containing calcitonin together with oleic acid (OA) or IPM. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. Anodal delivery at pH 3.0 was much larger than cathodal and passive delivery, due to the positive charge of calcitonin. Cumulative amount delivered (CUM) by cathodal or passive delivery was close to zero for 10 hours. The pretreatment of skin by neat IPM markedly increased the CUM anodically. CUM increased as the current density, drug concentration or the duration of IPM treatment increased. Microemulsion containing IPM or oleic acid was prepared and the phase diagram was constructed. CUM also increased when IPM was incorporated into a microemulsion. OA microemulsion showed similar enhancing effect to IPM microemulsion. The delivery of calcitonin from 70% (v/v) ethanol aqueous solution showed a large increase in flux. Laser treatment of skin before flux experiment exhibited about 2 fold increase in total calcitonin amount transported for 12 hours, when compared to that delivered by IPM microemulsion. Based on these results, we have evaluated the possibility of delivering enough amount of calcitonin to reach the therapeutic level. The data suggest that it is highly possible to deliver clinically effective amount of calcitonin using iontophoresis patch with small area (<10 $cm^2$).

A Study on the Power Management Algorithm of Centralized Electric Vehicle Charging System (중앙제어기반 전기자동차 충전시스템의 에너지관리 알고리즘에 관한 연구)

  • Do, Quan-Van;Lee, Seong-Joon;Lee, Jae-Duck;Bae, Jeong-Hyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.566-571
    • /
    • 2011
  • As Plug-in Hybrid Vehicle and Electric Vehicle (PHEV/EV) take a greater share in the personal automobile market, their high penetration levels may bring potential challenges to electric utility especially at the distribution level. Thus, there is a need for the flexible charging management strategy to compromise the benefits of both PHEV/EV owners and power grid side. There are many different management methods that depend on the objective function and the constraints caused by the system. In this paper, the schema and dispatching schedule of centralized PHEV/EV charging spot network are analyzed. Also, we proposed and compared three power allocation strategies for centralized charging spot. The first strategy aims to maximize state of vehicles at plug-out time, the rest methods are equalized allocation and prioritized allocation based on vehicles SoC. The simulation results show that each run of the optimized algorithms can produce the satisfactory solutions to response properly the requirement from PHEV/EV customers.

Evaluation of Voltage Sag and Unbalance due to the System Connection of Electric Vehicles on Distribution System

  • Lee, Soon-Jeong;Kim, Jun-Hyeok;Kim, Doo-Ung;Go, Hyo-Sang;Kim, Chul-Hwan;Kim, Eung-Sang;Kim, Seul-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.452-460
    • /
    • 2014
  • Due to increased concerns for rising oil prices and environmental problems, various solutions have been proposed for solving energy problems through tightening environmental regulations such as those regarding $CO_2$ reduction. Among them, Electrical Vehicles (EVs) are evaluated to be the most realistic and effective approach. Accordingly, research and development on EVs and charging infrastructures are mainly proceeding in developed countries. Since EVs operate using electric energy form a battery, they must be connected to the power system to charge the battery. If many EVs are connected during a short time, power quality problems can occur such as voltage sag, voltage unbalance and harmonics which are generated from power electronics devices. Therefore, when EVs are charged, it is necessary to analyze the effect of power quality on the distribution system, because EVs will gradually replace gasoline vehicles, and the number of EVs will be increased. In this paper, a battery for EVs and a PWM converter are modeled using an ElectroMagnetic Transient Program (EMTP). The voltage sag and unbalance are evaluated when EVs are connected to the distribution system of the Korea Electric Power Corporation (KEPCO). The simulation results are compared with IEEE standards.

A Study on HVDC and BESS Application for High Penetration of Renewable Energy Sources (제주지역 재생에너지 수용을 위한 HVDC 및 BESS 활용에 관한 연구)

  • Kwak, Eun-Sup;Min, Jae-Hyun;Jung, Ho-Chul;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1339-1348
    • /
    • 2021
  • There are variety of reasons for renewable energy curtailment, including lack of transmission availability and grid system stability. In the Jeju island region, there are many cases in which the supply of electricity is already increased compared to the demand for electricity due to the increase of solar and wind power generation facilities, and accordingly, the number of curtailments for wind power generation is increasing. This research aims to find the direction of efficient reception of renewable energy and stable operation of the power system using HVDC(High Voltage Direct Current) and BESS(Battery Energy Storage System) facilities that are in charge of power supply in Jeju island. And the paper suggests a practical operation plan for optimal system operation, and the direction of system operation of the land power system due to the expansion of solar and wind power generation facilities in the future.

Enhanced Environmental Stability of Graphene Field-Effect Transistors through Interface Control (계면 제어를 통한 그래핀 기반 전계효과 트랜지스터의 환경 안정성 향상)

  • Seong, Jun Ho;Lee, Dong Hwa;Lee, Eunho
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.75-79
    • /
    • 2022
  • Graphene is a two-dimensional carbon allotrope composed of honeycomb sp2 hybrid orbital bonds. It shows excellent electrical and mechanical properties and has been spotlighted as a core material for next-generation electronic devices. However, it exhibits low environmental stability due to the easy penetration or adsorption of external impurities from the formation of an unstable interface between the materials in the electronic devices. Therefore, this work aims to improve and investigate the low environmental stability of graphene-based field-effect transistors through direct growth using solid hydrocarbons as a precursor of graphene. Graphene synthesized from direct growth shows high electrical stability through reduction of change in charge mobility and Dirac voltage. Through this, a new approach to utilize graphene as a core material for next-generation electronic devices is presented.