• Title/Summary/Keyword: Charge/discharge

Search Result 1,336, Processing Time 0.028 seconds

Hydrothermal Synthesis of Li-Mn Spinel Nanoparticle from K-Birnessite and Its Electrochemical Characteristics (K-Birnessite를 이용한 Li-Mn Spinel 나노입자 합성 및 전기화학적 특성 평가)

  • Kim, Jun-Il;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Sun, Yang-Kook
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.590-592
    • /
    • 2010
  • Li-Mn spinel ($LiMn_2O_4$) is prepared by a hydrothermal process with K-Birnessite ($KMnO_4{\cdot}yH_2O$) as a precursor. The K-Birnessite obtained via a hydrothermal process with potassium permanganate [$KMnO_4$] and urea [$CO(NH_2)_2$] as starting materials are converted to Li-Mn spinel nanoparticles reacting with LiOH. The molar ratio of LiOH/K-Birnessite is adjusted in order to find the effect of the ratio on the structural, morphological and electrochemical performances of the Li-Mn spinel. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetry (TG) are used to investigate the crystal structure and morphology of the samples. Galvanostatic charge and discharge are carried out to measure the capacity and rate capability of the Li-Mn spinel. The capacity shows a maximum value of $117\;mAhg^{-1}$ when the molar ratio of LiOH/K-Birnessite is 0.8 and decreases with the increase of the ratio. However the rate capability is improved with the increase of the ratio due to the reduction of the particle size.

Development of a continuous electrolytic system with an ion exchange membrane for pH-control with only one discharge of electrolytic solution and its characteristics (단일 전해액 배출만을 가지는 pH조절용 연속식 이온 교환막 전해 시스템의 개발과 그 특성)

  • Kim Kwang-Wook;Kim In-Tae;Park Geun-Il;Lee Eil-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.269-278
    • /
    • 2005
  • In order to produce only a pH-controlled solution without discharging any unwanted solution, this work has developed a continuous electrolytic system with a pH-adjustment reservoir being placed before an ion exchange membrane-equipped electrolyzer, where as a target solution was fed into the pH-adjustment reservoir, some portion of the solution in the pH-adjustment reservoir was circulated through the cathodic or anodic chamber of the electrolyzer depending on the type of the ion exchange membrane used, and some other portion of the solution in the pH-adjustment reservoir was discharged from the electrolytic system through the other counter chamber with its pH being controlled. The internal circulation of the pH-adjustment reservoir solution through the anodic chamber in the case of using a cation exchange membrane and that through the cathodic chamber in the case of using an anion exchange membrane could make the solution discharged from the other counter chamber effectively acidic and basic, respectively. The phenomena of the pH being controlled in the system could be explained by the electro-migration of the ion species in the solution through the ion exchange membrane under a cell potential difference between anode and cathode and its consequently-occurring non-charge equilibriums and electrolytic water- split reactions in the anodic and cathodic chambers.

  • PDF

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

Development of a Continuous Electrolytic System for pH-control with Only One Discharge of Electrolytic Solution by Using Non-equilibrium Steady State Transfer of Ions across Ion Exchange Membranes (이온 교환막에서 이온의 비 평형 정상상태 이동을 이용한 단일 전해액의 배출만을 가지는 pH 조절용 연속식 전해 반응기 개발)

  • Kim Kwang-Wook;Lyu Je-Wook;Kim In-Tae;Park Geun-Il;Lee Eil-Hee
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.101-109
    • /
    • 2005
  • In order to produce only a pH-controlled solution without discharging any unused solution, this work has developed a continuous electrolytic system with a pH-adjustment reservoir being placed before an ion exchange membrane-equipped electrolyzer, where as a target solution was fed into the pH-adjustment reservoir, some portion of the solution in the pH-adjustment reservoir was circulated through the cathodic or anodic chamber of the electrolyzer depending on the type of the ion exchange membrane used, and some other portion of the solution in the pH-adjustment reservoir was discharged from the electrolytic system through other counter chamber with its pH being controlled as acid or base. The phenomena of the pH being controlled in the system could be explained by the electro-migration of the ion species in the solution through the ion exchange membrane under a cell potential difference between anode and cathode and its consequently-occurring non-charge equilibriums and electrolytic water- split reactions in the anodic and cathodic chambers.

  • PDF

Electrosorption Behavior of $TiO_2$/Activated Carbon Composite for Capacitive Deionization (축전식 이온제거에 대한 $TiO_2$/Activated Carbon 화합물의 전기흡착 거동)

  • Lee, Jeong-Won;Kim, Hong-Il;Kim, Han-Joo;Park, Soo-Gil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.265-271
    • /
    • 2010
  • Desalination effects of capacitive deionization (CDI) process was studied using $TiO_2$/activated carbon electrode. In order to enhance the wettability of electrode and decrease a electrode resistance, $TiO_2$ was coated on activated carbon. By means of $TiO_2$ coating on activated carbon, electric double layer to adsorption content in CDI process was increased. It was identified from TEM, XRD, and XPS that the activated carbon based on $TiO_2$ composite was fabricated successfully by means of sol-gel method. As a results of cyclic voltammetry and impedance, it was identified that $TiO_2$/activated carbon electrode has more electric double later capacitance and less diffusion resistance than activated carbon. Also charge-discharge and ion conductivity profiles showed that the ion removal ratios of $TiO_2$/activated carbon electrode in NaCl electrolyte of $1000\;{\mu}S/cm$ more increased about 39% than that of activated carbon. In conclusion it was possible to identify that the carbon electrode coated $TiO_2$ as electrode material was more effective than raw carbon electrode.

Activities of a Home Hospice Organization (가정호스피스기관의 활동에 관한 연구)

  • Kim, Jung-Hee;Choi, Young-Soon
    • Journal of Hospice and Palliative Care
    • /
    • v.3 no.1
    • /
    • pp.28-38
    • /
    • 2000
  • Purpose : This study examined characteristics of, problems of and services provided to hospice recipients and their family members at a home hospice organization. Methods : The subjects were 113 people who were discharged from one free-standing home hospice organization between November, 1994 and lune, 1999. Since the opening of the organization in November of 1994, it has provided hospice services at patients' homes with no charge. Data were collected from those subjects' records. Results : The average age of the subjects was 57.1 years; those aged 60 and over were 54%. Spouse was the most frequent(50.9%) primary caregiver followed by daughter-in-law and daughter. All the subjects were diagnosed as having cancer. Of those 41 subjects who did not know their terminal stage in the beginning, 31 subjects came to know their states. Of the subjects, 72.7% were referred from their physicians. On the average, the service duration and the number of home visits were 6.8 weeks and 7.2 times, respectively. Pain was the most prevalent problem of the subjects(89.4%). Medication management was the most frequently provided service followed by psychological supports. The reasons for discharge were death(88.5%) and refusal(8%). Home was the most frequent place of death(60%). Conclusion Home hospice service providers should be trained particularly in working with elders and in managing cancer pain. People need to be referred at an appropriate time for achieving goals of hospice. Community recognition of hospice services needs to be promoted.

  • PDF

Electrochemical Hydrogenation Behavior of Surface-Treated Mg-based Alloys for Hydrogen Storage of Fuel Cell (연료전지의 수소저장용 마그네슘계 합금의 표면제어에 의한 전기화학적 수소화 거동 연구)

  • Kim, Ho-Sung;Lee, Jong-Ho;Boo, Seong-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.46-52
    • /
    • 2006
  • The effects of surface treatment on the hydrogen storage properties of a $Mg_2Ni$ alloy particle were investigated by the microvoltammetric technique, in which a carbon-filament microelectrode was manipulated to make electrical contact with the particle in a KOH aqueous solution. It was found that the hydrogen storage properties of $Mg_2Ni$ at room temperature were improved by the surface treatment with a nickel plating solution. The sodium salts(sodium phosphate and sodium dihydrogen citrate) contained in the nickel plating solution made the alloy form an amorphous-like state, resulting in an improved hydrogen charge/discharge capacity at room temperature as high as about 150[mAh/g] from the original value of 17[mAh/g]. Potential-step experiment was carried out to determine the apparent chemical diffusion coefficient of hydrogen atom($D_{app}$) in the alloy. Since the alloy particle we used here was a dense, conductive sphere, the spherical diffusion model was employed for data analysis. $D_{app}$ was found to vary the order between $10^{-8}{\sim}10^{-9}[cm^2/s]$ over the course of hydrogenation and dehydrogenation process.

Electrochemical Characteristics of Lithium Battery Anode Materials Using Petroleum Pitches (석유계 피치를 사용한 리튬전지 음극소재의 전기화학적 특성)

  • Hwang, Jin Woong;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.534-538
    • /
    • 2017
  • In this study, the molecular weight controlled pitches derived from pyrolyzed fuel oil (PFO) were prepared using solvent extraction and were carbonized. Electrochemical characteristics of lithium battery anode materials were investigated using these petroleum pitches. Three pitch samples prepared by the thermal reaction were 3903 (at $390^{\circ}C$ for 3 h), 4001 (at $400^{\circ}C$ for 1 h) and 4002 (at $400^{\circ}C$ for 2 h). The prepared hexane insoluble pitches were analysed by XRD, TGA, SEM and Gel permeation Chromatography (GPC). The electrochemical characteristics of the PFO-derived pitch as an anode material were investigated by constant current charge/discharge, cyclic voltammetry and electrochemical impedance tests. The coin cell using pitch (4001) and the electrolyte of $LiPF_6$ in organic solvents (EC : DMC = 1 : 1 vol%, VC 3 wt%) has better initial capacity (310 mAh/g) than that of other pitch coin cells. Also, this carbon anode showd a high initial efficiency of 82%, retention rate capability at 2 C/0.1 C of 90% and cycle retention of 85%. It was found that modified pitches improved the cycling and rate capacity performance.

Effect of Vapor-Cooled Heat Stations in a Cryogenic Vessel (극저온액체 저장용기에서 열전도 차폐단의 영향)

  • Kim, S.Y.;Kang, B.H.;Choi, H.J.
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 1998
  • An experimental study on effect of vapor-cooled heat stations in a 5.5 liter cryogenic vessel has been performed. The cryogenic vessel is made of stainless steel of thickness of 1mm and insulated by the combined insulation of vacuum, MLI(multi-layer insulation) and vapor-cooled radiation shield. Vapor-cooled heat stations are also constructed based on the 1-dimensional thermal analysis to reduce the heat inleak through a filling tube. Thermal analysis indicates that the vapor-cooled heat stations can substantially enhance the performance of vessel for cryogenic fluids with high $C_p/h_{fg}$ where $C_p$ the specific heat and $h_{fg}$ the heat of vaporization, such as $LH_2$ and LHe. The experimental results for $LN_2$ shows that the total heat inleak into inner vessel consists of 14% radiation and 86% conduction through the filling tube. Therefore, it is expected that the conduction heat in leak of the vessel for high $C_p/h_{fg}$ cryogenic fluids can be significantly reduced. powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

Effects of Alloying Elements and Binding Materials on the Corrosion Behavior of Metal Hydride Electrodes (금속수소화물전극의 부식특성에 미치는 합금원소와 결합제의 영향)

  • Lee, Yang-Boum;Choe, Han-Cheol;Park, Ji-Yoon;Kim, Kwan-Hyu
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.4
    • /
    • pp.161-167
    • /
    • 1998
  • It has been investigated the effects of alloying elements and binders on the corrosion behavior of metal hydride electrodes for anode of Ni/MH secondary battery. The $AB_5$-type alloys, $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$ and $(LM)Ni_{3.6}Co_{0.7}Mn_{0.3}Al_{0.4}$, were used for the experiments. The electrodes were prepared by mixing and cold-pressing of alloy powders with Si sealent or PTFE powders, or cold-pressing the electroless copper coated alloy powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF