• Title/Summary/Keyword: Charge/Discharge capacity

Search Result 484, Processing Time 0.028 seconds

Charge-discharge capacity and AC impedance of $LiMn_{2-y}M_{y}O_{4}$(M=Mg, Zn) cathode ($LiMn_{2-y}M_{y}O_{4}$(M=Mg, Zn) 정극의 충방전 용량 및 AC 임피던스 특성)

  • 정인성;위성동;이승우;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.455-458
    • /
    • 2001
  • Spinel $LiMn_{2-y}$$M_{y}$ $O_4$powder was prepared solid-state method by calcining the mixture of LiOH - $H_2O$, Mn $O_2$, ZnO and MgO at 80$0^{\circ}C$ for 36h. To investigate the effect of substitution with Mg, Zn cation, charge-discharge experiments and initial impedance spectroscopy performed. The structure of $LiMn_{2-y}$$M_{y}$ $O_4$crystallites was analyzed from powder X-ray diffraction data as a cubic spinel, space group Fd3m. all cathode material showed spinel phase based on cubic phase in X-ray diffraction. Ununiform which calculated by (111) face and (222) face was constant in spite of the change of y value, except PUf\ulcorner LiM $n_2$ $O_4$. The discharge capacities of the cathode for the cation subbstitUtes $LiMn_{2-y}$$M_{y}$ $O_4$/Li cell at the 1st cycle and at the 40th cycle were about 120~124 and 108~112mAh/g except LiM $n_{1.9}$Z $n_{0.1}$ $O_4$/Li cell, respectively. This cell capacity is retained by 93% after 40th cycle. AC impedance of $LiMn_{2-y}$$M_{y}$ $O_4$/Li cells revealed the similar resistance of about 65~110$\Omega$ before cycling. before cycling.g.g.

  • PDF

The Effect of Mechanical Grinding or Electrochemical Properties of $CaNi_5$ Hydrogen Storage Alloy ($CaNi_5$ 수소저장합금의 전기화학 특성에 미치는 MG 처리 효과)

  • Lee C. R.;Kang S. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • The effect of the MG on the electrochemical charge-discharge properties of $CaNi_5$ hydrogen storage alloys was investigated under Ar and $H_2$ atmosphere. $CaNi_5$ alloy was partially decomposed to CaO and Ni phase during the MG process. The decomposition of $CaNi_5$ alloy was enhanced by the MG process which leads to crash and reformation of oxide layer on the alloy surface. As the MG process time increased, initial discharge capacity of the electrode was reduced, but the decay rate of the capacity compared to $CaNi_5$ alloys was slower. It may be described that the degradation of $MG-CaNi_5$ electrode was caused by the reduction of the reversible hydrogen reaction sites and increasing polarization resistance of hydrogen adsorption resulted from phase decomposition and disorder during the MG process, and/or by hydroxide formation during the electrochemical charge-discharge cycles.

Synthesis of Multi-component Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization

  • Park, Yeong-Uk;Kim, Jong-Sun;Gwon, Hyeok-Jo;Seo, Dong-Hwa;Kim, Seong-Uk;Hong, Ji-Hyeon;Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.37.1-37.1
    • /
    • 2010
  • The multi-component olivine cathode material, $LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$, was prepared via a novel coprecipitation method of the mixed transition metal oxalate, $Mn_{1/3}Fe_{1/3}Co_{1/3}(C_2O_4){\cdot}2H_2O$. The stoichiometric ratio and distribution of transition metals in the oxalate, therefore, in the olivine product, was affected sensitively by the environments in the coprecipitation process, while they are the important factors in determining the electrochemical property of electrode materials with multiple transition metals. The effect of the pH, atmosphere, temperature, and aging time was investigated thoroughly with respect to the atomic ratio of transition metals, phase purity, and morphology of the mixed transition metal oxalate. The electrochemical activity of each transition metal in the olivine synthesized through this method clearly was enhanced as indicated in the cyclic voltammetry (CV) and galvanostatic charge/discharge measurement. Three distinctive contributions from Mn, Fe, and Co redox couples were detected reversibly in multiple charge and discharge processes. The first discharge capacity at the C/5 rate was $140.5\;mAh\;g^{-1}$ with good cycle retention. The rate capability test showed that the high capacity still is retained even at the 4C and 6C rates with 102 and $81\;mAh\;g^{-1}$, respectively.

  • PDF

The Electrochemical Characterization of$LiMn_{2-y}M_yO_4$ Cathode Material - II. Charge and Discharge Property and Cyclic Voltametry of $LiMn_{2-y}M_yO_4$ (M=Zn, Mg) ($LiMn_{2-y}M_yO_4$ 정극 활물질의 전기화학적 특성 - II. $LiMn_{2-y}M_yO_4$ (M=Zn, Mg)의 충방전 및 순환전위전류 특성)

  • 정인성;김종욱;구할본;김형곤;손명모;박복기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.316-322
    • /
    • 2001
  • Cathode materials $LiMn_{2-y}$$M_{y}$ $O_4$(M=Zn and Mg) were obtained by reacting the mixture of LiOH.$H_2O$, Mn $O_2$ and MgO ar ZnO at 80$0^{\circ}C$ for 36h in an air atmosphere. These materials showed an extended cycle life in lithium-anode cells working at room temperatue in a 3.0 to 4.3V potential window. Among these materials, LiM $n_{1.9}$M $g_{0.1}$ $O_4$ showed the best cycle performance in terms of the capacity and cycle life. The discharge capacities of the cathode for the Li/LiM $n_{1.9}$ $M_{0.1}$ $O_4$ cell at the 1st cycle and at the 70th cycle were about 120 and 105mAh/g, respectively. This cell capacity is retained by 88% after 70th cycle. In cyclic voltammetry measurement, all cells revealed tow oxidation peaks and reduction peaks. However, Li/$LiMn_{2-y}$$M_{y}$ $O_4$ cell substituted with Zn and Mg showed new reaction peak during reduction reaction.eaction.ion.ion.

  • PDF

Cell-balancing Algorithm for Paralleled Battery Cells using State-of-Charge Comparison Rule

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.156-158
    • /
    • 2018
  • The inconsistencies between paralleled battery cells are becoming more considerable issue in high capacity battery applications like electric vehicles. Due to differences in state-of-charge (SOC) and internal resistance within individual cells in parallel, charging or discharging current is not appropriately balanced to each cell in terms of SOC, which may shorten the lifetime or sometimes cause safety issues. In this paper, an intelligent cell-balancing algorithm is proposed to overcome the inconsistency issue especially for paralleled battery cells. In this scheme, SOC information collected in the sub-BMS module is sent to the main-BMS module, where the number of parallel cells to be connected to DC bus is continuously updated based on the suggested SOC comparison rule. To verify the method, operation of the algorithm on 4 paralleled battery cells are simulated on Matlab/Simulink. The simulation result shows that the SOCs of paralleled cells are evenly redistributed. It is expected that the proposed algorithm provides high reliable and prolong the life cycle and working capacity of the battery pack.

  • PDF

Improving Electrochemical Properties of LiFePO4 by Doping with Gallium

  • Nguyen, Van Hiep;Park, Ju-Young;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.320-323
    • /
    • 2014
  • Ga-doped $LiFePO_4$ cathode materials were synthesized using a hydrothermal method. The microstructural characteristics and electrochemical performances were systematically investigated using field emission scanning electron microscopy, high-resolution X-ray diffraction, energy dispersive X-ray spectroscopy, charge-discharge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. Among the as-prepared samples, $LiFe_{0.96}Ga_{0.04}PO_4$ demonstrates the best electrochemical properties in terms of discharge capacity, electrochemical reversibility, and cycling performance with an initial discharge capacity of $125mAh\;g^{-1}$ and high lithium ion diffusion coefficient of $1.38{\times}10^{-14}cm^2s^{-1}$ (whereas for $LiFePO_4$, these were $113mAh\;g^{-1}$ and $8.09{\times}10^{-15}cm^2\;s^{-1}$, respectively). The improved electrochemical performance can be attributed to the facilitation of Li+ ion effective diffusion induced by $Ga^{3+}$ substitution.

High Rate Performance of Li[Co0.50Li0.17Mn0.33]O2 Cathode (Li[Co0.50Li0.17Mn0.33]O2 양극물질의 고율 충방전 특성)

  • Park Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.737-743
    • /
    • 2006
  • [ $Li[Co_{0.50}Li_{0.17}Mn_{0.33}]O_2$ ] powder was prepared using a simple combustion method. specially, ratio of 2:1, 3:2, 1:1, 2:3, 1:2 was adopted as acetate source/nitrate source. The diffraction pattern of $Li[Co_{0.50}Li_{0.17}Mn_{0.33}]O_2$ powder showed that this compound could be classified as hexagonal $a-NaFeO_2$ structure (space group : $R\bar{3}m$). The size of powder was less than $1{\mu}m$. Small particle size of cathode powder would give a good ionic and electronic conductivity to cathode electrode, which made of cathode powder. As the increase of nitrate source-ratio, discharge capacity of $Li[Co_{0.50}Li_{0.17}Mn_{0.33}]O_2$ at high charge-discharge rate was increased. When the ratio of acetate source/nitrate source was 1:2, discharge capacity at 10 C rate (2000 mA/g) was 180 mAh/g. It was $10{\sim}15%$ larger than that of powder, which have 2:1 as acetate source/nitrate ratio.

Electrochemical Behavior of Lithium Titanium oxide/activated Carbon Composite for Electrochemical Capacitor

  • Yang, Jeong-Jin;Kim, Hong-Il;Yuk, Young-Jae;Kim, Han-Joo;Park, Soo-Gil
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • The $Li_4Ti_5O_{12}$/AC composite was prepared by sol-gel process with ultrasonication. The prepared composite was characterized by SEM, XRD and TG analysis, and their electrochemical behaviors were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge test in 1M $LiBF_4$/PC electrolyte. From the results, the $Li_4Ti_5O_{12}$ particles coated on AC surface had an average particle size of 100 nm and showed spinel-framework structure. When the potential range of the $Li_4Ti_5O_{12}$/AC composite was extended from 0.1 to 2.5 V, redox peaks and electric double layer property were revealed. The initial discharge capacity of $Li_4Ti_5O_{12}$/AC composite was 218 mAh $g^{-1}$ at 1 C. The enhancement of discharge capacity was attributed to electric double layer of added activated carbon.

Electrochemical Properties of Li[Ni0.2Li0.2Mn0.6]O2 by Microwave-assisted Sol-gel Method

  • Park, Yong-Joon;Kim, Seuk-Buom
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.102-105
    • /
    • 2009
  • $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ cathode materials have been synthesized by a microwave-assisted sol-gel method. The structure and electrochemical properties of $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ were studied by X-ray difftactometry (XRD), scanning electron microscopy (SEM) and charge-discharge cycler. The powder prepared by microwave assisted sol-gel method showed good crystallinity and well-defined facet shapes. The $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ electrode delivered a high discharge capacity of 230 $mAhg^{-1}$ at the specific current of 40 $mAg^{-1}$ (0.2 C rate) in the voltage range of 2.0${\sim}$4.8 V. About 60 % of the discharge capacity measured at 0.2 Crate (140 $mAhg^{-1}$) was maintained at a 6 C (1200 $mAg^{-1}$)rate. The cyclic property was also stable and it did not deteriorated at a high Crate.

The Advanced Research on Electrochemical Properties of $LiFePO_4$ Cathode Materials for Lithium Polymer Batteries. (리튬폴리머전지용 정극활물질 $LiFePO_4$의 전기화학적 특성 향상 연구)

  • Jun, Dae-Kyoo;Jin, En-Mei;Han, Zhen-Ji;Baek, Hyung-Ryul;Gu, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.368-369
    • /
    • 2006
  • The pure $LiFePO_4$, carbon added $LiFePO_4(LiFePO_4/C$) and pyrene added $LiFePO_4(LiFePO_4/P$) are synthesized by using solid-state reaction. XRD patterns show no impurity phase in the three kinds of the cathode materials. The 10wt% pyrene added $LiFePO_4$ shows around 140mAh/g of discharge capacity at 3rd cycle compared to the pure $LiFePO_4$. The carbon added $LiFePO_4$ shows 145mAh/g of discharge capacity at 3rd cycle and stable cycle-life compared to the others.

  • PDF