• Title/Summary/Keyword: Charge/Discharge System

Search Result 367, Processing Time 0.025 seconds

Battery Charge and Discharge Optimization for Vehicle-to-grid Regulation Service (전력 보조서비스 제공을 위한 전기자동차 충/방전 최적화)

  • Kim, Wook-Won;Shin, Hong-Yul;Kim, Jin-O;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1033-1038
    • /
    • 2014
  • Electric vehicles should be connected to power system for charge and discharge of battery. Besides vehicle's battery is charged for a power source, it is also reversibly possible to provide power source from battery to power system. Researches on battery usage for regulation resources have been progressed and could cause cost increase excessively because they distribute regulation capacity equally without considering the battery wear cost of SOC, temperature, voltage and so on. This causes increase of grid maintenance cost and aggravate economical efficiency. In this paper it is studied that the cost could be minimized according to the battery condition and characteristic. The equation is developed in this paper to calculate the possible number of charge and discharge cycle, according to SOC level and weighting factors representing the relation between battery life and temperature as well as voltage. Thereafter, the correlation is inferred between the battery condition and wear cost reflecting the battery price, and the expense of compensation is decided according to the condition on battery wear-out of vehicle. In addition, using realtime error between load and load expectation, it is calculated how much regulation capacity should be provided.

The PV MPPT & Charge and Discharge Algorithm for the Battery Included Solar Cell Applications (배터리 내장형 초소형 태양광 장치용 PV MPPT 및 충방전 제어 알고리즘)

  • Kim, Seung-Min;Park, Bong-Hee;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lae, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.69-75
    • /
    • 2013
  • To increase the efficiency of the photovoltaic, almost photovoltaic appliances are controlled by Maximum Power Point Tracking(MPPT). Existing most of the PV MPPT techniques have used power which multiplies sensed output current and voltage of the solar cell. However, these algorithms are unnecessarily complicated and too expensive for small and compact system. The other hand, the proposed MPPT technique is only one sensing of the MPPT converter's output current, so there is no need to insert another sensors of battery side. Therefore, this algorithm is simpler compared to the traditional approach and is suitable for low power solar system. Further, the novel proper charge/discharge algorithm for the battery with PV MPPT is developed. In this algorithm, there is CC battery charge mode and load discharge mode of the PV cell & battery dual. Also we design current control to regulate allowable current during the battery charging. The proposed algorithm will be applicable to battery included solar cell applications like solar lantern and solar remote control car. Finally, the proposed method has been verified with computer simulation.

Crystallization and charg-discharge properties of $Li_2O-P_2O_5-V_2O_5$-gless as Cathode material (정극재료로서 $Li_2O-P_2O_5-V_2O_5$ 유리의 결정화와 충방전 특성)

  • Son, Myeng-Mo;Lee, Heon-Su;Song, Hee-Woong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.157-159
    • /
    • 2000
  • Vanadate glass in the $Li_2O-P_2O_5-V_2O_5$ system with 60mol% $V_2O_5$ was prepared by melting the bath in pt. crucible followed by quenching on the copper plate. We found that $Li_2O-P_2O_5-V_2O_5$ glass ceramics obtained from nucleation of $Li_2O-P_2O_5-V_2O_5$ glass showed significantly higher capacity and longer cycle life than conventionally made crystalline $LiV_3O_8$. In the present paper, We describe the charge/discharge properties during crystallization process and find the best crystallization condition of $Li_2O-P_2O_5-V_2O_5$ glass as cathode material. The Charge and discharge capacity of $Li_2O-P_2O_5-V_2O_5$ glass was about 220mAh/g for the cell heat-treated at $250^{\circ}C$ for 2.5hr.

  • PDF

Space Charge Behavior of Oil-Impregnated Paper Insulation Aging at AC-DC Combined Voltages

  • Li, Jian;Wang, Yan;Bao, Lianwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.635-642
    • /
    • 2014
  • The space charge behaviors of oil-paper insulation affect the stability and security of oil-filled converter transformers of traditional and new energies. This paper presents the results of the electrical aging of oil-impregnated paper under AC-DC combined voltages by the pulsed electro-acoustic technique. Data mining and feature extractions were performed on the influence of electrical aging on charge dynamics based on the experiment results in the first stage. Characteristic parameters such as total charge injection and apparent charge mobility were calculated. The influences of electrical aging on the trap energy distribution of an oil-paper insulation system were analyzed and discussed. Longer electrical aging time would increase the depth and energy density of charge trap, which decelerates the apparent charge mobility and increases the probability of hot electron formation. This mechanism would accelerate damage to the cellulose and the formation of discharge channels, enhance the acceleration of the electric field distortion, and shorten insulation lifetime under AC-DC combined voltages.

Experiment of Characteristic on the Charge and Discharge of Cold in Ice Storage System Applied Ice Making Method In-Water (수중 빙 제조방식을 적용한 빙축열시스템의 축방냉 특성 실험)

  • 최인수;김재돌;윤정인
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.31-37
    • /
    • 2002
  • This paper is concerned with the development of a new method for making and separating ice and saving floated ice by installing an evaporation plate at in-water within a storage tank. In a conventional harvest-type ice storage system, a tank saves ice by separating a formed ice from an installed evaporation plate, which is located above an ice storage tank as an ice storage system. A new harvest-type method shows very good heat transfer efficiency than a convectional method. It is because the evaporation panel is directly contacted with water in a storage tank. Also, at a conventional system a circulating pump, a circulating water distributor and a piping are installed, but these components are not necessary in a new method. In this study two kinds of ice storage systems are experimentally investigated to study the thermal characteristics of ice storage tanks. The results showed discharge of cold capacity of new type indicated the high values about 30~40% based on five time of drive, the temperature difference of inlet/outlet occurred the big range about $1.3^{\circ}C$. So, the new type which makes ice in water showed superiorly.

A Study on the Design of Discharge Voltage of Discharge Element with Control Electrode (제어전극을 갖는 방전소자의 방전개시전압 설계에 관한 연구)

  • Park, Keun-Seok;Choi, Jun-Woong;Lee, Dae-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1512-1516
    • /
    • 2018
  • The power system and control system constantly reveals surge voltage such as switching surge of lighting devices and power conversion devices, operating and stops surge of rotating devices, charge & discharge surge, opening & closing surge of circuit breakers and the like. Such a surge voltages can cause damage or malfunction of the element such as CPU, Memory, semiconductor etc. In the industry, in order to protect the system from the surge voltage, a surge protector with low discharge starting voltage, fast response time, and low capacitance is required, and technical development research for that is ongoing. In this paper, in order to solve the problem of the existing GDT discharge tube not discharging from the transient voltage which is higher than the commercial voltage and lower than the discharge voltage of the discharge element, we have developed a discharge element having the control electrode & control circuit. The discharge element having the control electrode and the control circuit can control the discharge voltage according to the needs of the consumer and can satisfy the requirement of the discharge element and the technology of the surge protector downsizing technology and the surge protection technology. It is judged to be effective for development.

A Parasol-type Grid-connected Solar Power Generation System for Utilization of New and Renewable Energy (신.재생에너지 활용을 위한 연계 계통형 그늘막 태양광 발전 시스템)

  • Lee, Jae-Min;Lee, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.230-236
    • /
    • 2009
  • In this paper, in order to utilize new and renewable energy a grid-connected parasol-type solar power generation system is presented. The proposed power system combining with commercial electric power system is designed to meet the need fur maximum power consumption and parasols for the people staying at beach during hot summer. Solar electric power can be charged in rechargeable batteries during day time and used to provide charged electric power to loads like lamps and fans during night time, A battery charge-discharge controller is required for the good performance of batteries to be charged. The presented battery controller is designed based on high performance microprocessor for precise charge-discharge operations. An alarm circuit to give notice of battery exchange time and other convenient functions are installed in the system. We implemented the proposed solar power generation system at East Sea beach during peak summer season to verify its productivity and performance by experiments.

A Study on the Improved Load Sharing rate in Paralleled Operated Lead Acid Battery by Using Microprocessor (마이크로 프로세서를 이용한 축전지의 병렬 운전 부하분담률 개선에 관한 연구)

  • 이정민
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.493-497
    • /
    • 2000
  • A battery is the device that transforms the chemical energy into the direct-current electrical energy without a mechanical process. Unit cells are connected in series to obtain the required voltage while being connected in parallel to organize capacity for load current. Because the voltage drop down in one set of battery is faster than in two one it may result in the low efficiency of power converter with the voltage drop and cause the system shutdown. However when the system being shutdown. However when the system being driven in parallel a circular-current can be generated,. It is shown that as a result the new batteries are heated by over-charge and over-discharge and the over charge current increases rust of the positive grid and consequently shortens the lifetime of the new batteries. The difference between the new batteries and old ones is the amount of internal resistance. In this paper we can detect the unbalance current using the microprocessor and achieve the balance current by adjusting resistance of each set, The internal resistance of each set becomes constant and the current of charge and discharge comes to be balanced by inserting the external resistance into the system and calculating the change of internal resistance.

  • PDF

Analysis and Comparison of Switching Losses and Temperature using Si and SiC devices applied in Two Stage AC-DC Converter for Battery Pack Testing System (배터리팩 시험기를 위한 2단 구성 AC-DC 컨버터의 Si와 SiC의 손실 및 온도 비교 분석)

  • Seong, Ho-Jae;Choi, Hyeong-Jun;Hong, Seok-Jin;Hyun, Seung-Wook;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.397-398
    • /
    • 2016
  • This paper analyzes switching losses, efficiency and temperature depending on Si and SiC devices applied in two stage AC-DC converter. To evaluate the charge and discharge performance and stability of the battery pack, there is a need for a battery pack testing system. To do battery charge and discharge experiment used in battery pack test, A topology, two stage AC-DC converter, has been built. SiC devices more decrease switching losses than that of Si. Also, cooling system was applied in Si and SiC devices. When using SiC devices, it can be confirmed that the size of heat sink is reduced for small loss.

  • PDF

The Control Algorithm of Power-conditioner for Stand-alone PV System (독립형 PV시스템용 전력변환기 제어 알고리즘)

  • 정영석;강기환;김홍성;정명웅;유권종;송진수
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.10a
    • /
    • pp.209-215
    • /
    • 1998
  • This paper deals with stand-alone Photovoltaic system(SPVS) with charge and discharge controller. Main power source of SPVS are generally solar cell and battery. therefore SPVS can be classified into variable types in accordance with connection type between battery and solar cell. Mainly used one of them is direct connection type which has advantages such as simple structure and simple controller. However most big drawback of this system is energy loss by voltage disharmony between solar cell and battery. Therefore SPVS with charge and discharge controller which can operate solar cell at maximum power point is designed and analyzed by simulation in this paper.

  • PDF