• Title/Summary/Keyword: Characteristic loss

Search Result 1,311, Processing Time 0.031 seconds

THE COMPARING STUDY OF THE DIELECTRIC CHARACTERISTIC FROM THE LTCC MICROSTRIP RESONATOR ARCHITECTURES (LTCC MICROSTRIP RESONATOR 구조에 따른 유전특성 비교 연구)

  • Lee, Joong-Keun;Jung, Hyun-Chul;Yoo, Chan-Sei;Kim, Dong-Su;Yoo, Myung-Jae;Park, Sung-Dae;Lee, Woo-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.309-310
    • /
    • 2005
  • Generally, the dielectric constant and loss tangent are gotten by resonators. This paper presents analysis of the comparing the dielectric constant and loss tangent from the Ring, T and series gap structures. The T structure can be analyzed easily at wideband characteristic with simple design. the Ring can ignore the radiation loss from the open-ended effect. the Series gap can get more accurate permittivity than a Ring structure. The Used materials were dupont9599 LTCC ceramic and daeju0086 Ag.

  • PDF

Coupling loss factor evaluation using loss factor based on the SEA (SEA에 기초를 둔 손실계수를 이용한 결합계수의 평가)

  • 안병하;황선웅;김영종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.568-571
    • /
    • 1997
  • The overall aim of this paper is to determine coupling loss factor using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one directional power flow between two sub structures. Using these conditions, it is possible to find the coupling loss factor equation. The comparison between theory of power transmission on conjunction and above equation, show a good agreement in simple beam structure. To check the effectiveness of above equation, it was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

A Study on the loss Model and Characteristic Comparison of Three-Level Converter and Full-Bridge Converter through the Conduction loss Analysis of Power devices (전력용 반도체의 전도손실 분석을 통한 Three-Level 컨버터와 Full-Bridge 컨버터의 손실모델 및 특성비교에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kwon, Soon-Do;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.122-125
    • /
    • 2004
  • This paper presents the loss analysis comparison for Three-Level Converter and Full-Bridge converter. The result of the analysis is verified with 2.5kW prototype.

  • PDF

Design of Expected Loss Control Chart Considering Economic Loss (경제적 손실을 고려한 기대손실 관리도의 설계)

  • Kim, Dong-Hyuk;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.56-62
    • /
    • 2013
  • Control chart is representative tool of Statistical Process Control (SPC). But, it is not given information about the economic loss that occurs when a product is produced characteristic value does not match the target value of the process. In order to manage the process, we should consider not only stability of the variation also produce products with a high degree of matching the target value that is most ideal quality characteristics. There is a need for process control in consideration of economic loss. In this paper, we design a new control chart using the quadratic loss function of Taguchi. And we demonstrate effectiveness of new control chart by compare its ARL with ${\overline{x}}-R$ control chart.

Magnetization Loss Characteristic of a Stacked Bi-2223 Conductor (적층 Bi-2223도체의 자화손실 특성)

  • 한형주;류경우;성기철
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.46-49
    • /
    • 2002
  • The ac loss is an important issue in the design of superconducting cables and transformers. In these devices the Bi-2223 tapes are usually placed face-to-face In such arrangements ac loss is influenced by adjacent tapes. The effect is investigated by measuring the magnetization loss in the stacked conductor, which consists of various numbers of Bi-2223 tapes. For the stacked conductor in perpendicular field the magnetization loss at low fields is greatly decreased, compared to the loss of the single tape. The loss at high fields is unaffected. This behavior is well described by the slab model.

  • PDF

AC Loss Characteristic in the Fault Current Limiting Elements of a Coil Type (코일형 한류소자의 교류손실 특성)

  • Ryu, Kyung-Woo;Ma, Yong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.370-374
    • /
    • 2005
  • AC loss of a superconducting conductor has a strong influence on the economic viability of a superconducting fault current limiter, which offers an attractive means to limit short circuit current in power systems. Therefore, the AC loss characteristics in several fault current limiting elements of a coil type have been investigated experimentally. The test result shows that AC losses measured in the fault current limiting elements depend on arrangement of a voltage lead. The AC loss of a bifilar coil is smallest among the fault current limiting elements of the coil type. The measured AC loss of the bifilar coil is much smaller than that calculated from Norris's elliptical model. However, the loss measured in a meander, which is frequently used in a resistive fault current limiter, agrees well to the theoretical one.

Optimal Replacement Policy of Degradation System with Loss Function (손실함수를 고려한 열화시스템의 최적교체정책)

  • 박종훈;이창훈
    • Journal of Applied Reliability
    • /
    • v.1 no.1
    • /
    • pp.35-46
    • /
    • 2001
  • Replacement policy of a degradation system is investigated by incorporating the loss function. Loss function is defined by the deviation of the value of quality characteristic from its target value, which determines the loss cost. Cost function is comprised of the inspection cost, replacement cost and loss cost. Two cost minimization problems are formulated : 1)determination of an optimal inspection period given the state for the replacement and 2)determination of an optimal state for replacement under fixed inspection period. Simulation analysis is performed to observe the variation of total cost with respect to the variation of the parameters of loss function and inspection cost, respectively As a result, parameters of loss function are seen to be the most sensitive to the total cost. On the contrary, inspection cost is observed to be insensitive. This study can be applied to the replacement policy of a degradation system which has to produce the quality critical product.

  • PDF

Analysis of Rainfall-Runoff Characteristic at Mountainous Watershed Using GeoWEPP and SWAT Model (GeoWEPP과 SWAT 모델을 이용한 산지 유역 강우-유출량 특성 분석)

  • Kim, Jisu;Kim, Minseok;Kim, Jin Kwan;Oh, Hyun-Joo;Woo, Choongshik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.31-44
    • /
    • 2021
  • Due to recent climate change, continuous soil loss is occurring in the mountainous watershed. The development of geographic information systems allows the spatial simulation of soil loss through hydrological models, but more researches applied to the mountain watershed areas in Korea are needed. In this study, prior to simulating the soil loss characteristics of the mountainous watershed, the field monitoring and the SWAT and GeoWEPP models were used to simulate and analyze the rainfall and runoff characteristics in the mountainous watershed area of Jirisan National Park. As a result of monitoring, runoff showed a characteristic of a rapid response as rainfall increased and decreased. In the simulation runoff results of calibrated SWAT models, R2, RMSE and NSE was 0.95, 0.03, and 0.95, respectively. The runoff simulation results of the GeoWEPP model were evaluated as 0.89, 0.30, and 0.83 for R2, RMSE, and NSE, respectively. These results, therefore, imply that the runoff simulated through SWAT and GeoWEPP models can be used to simulate soil loss. However, the results of the two models differ from the parameters and base flow of actual main channel, and further consideration is required to increase the model's accuracy.

Optimum Welding Position between Shell and Cylinder based on SEA (SEA를 이용한 셸과 실린더의 최적 용접 조건)

  • 이장우;양보석;안병하
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.370-376
    • /
    • 2004
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it ispossible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way (uni-directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two-stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure

Study on Optimum Welding Position between Shell and Cylinder based on SEA. (SEA를 이용한 쉘과 실린더의 최적 용접 조건에 관한 연구)

  • 안병하;이장우;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.969-972
    • /
    • 2003
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way(nl- directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding Point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure

  • PDF