• Title/Summary/Keyword: Characteristic Vector

검색결과 422건 처리시간 0.029초

Damage Proxy Map over Collapsed Structure in Ansan Using COSMO-SkyMed Data

  • Nur, Arip Syaripudin;Fadhillah, Muhammad Fulki;Jung, Young-Hoon;Nam, Boo Hyun;Kim, Yong Je;Park, Yu-Chul;Lee, Chang-Wook
    • 지질공학
    • /
    • 제32권3호
    • /
    • pp.363-376
    • /
    • 2022
  • An area under construction for a living facility collapsed around 12:48 KST on 13 January 2021 in Sa-dong, Ansan-si, Gyeonggi-do. There were no casualties due to the rapid evacuation measure, but part of the temporary retaining facility collapsed, and several cracks occurred in the adjacent road on the south side. This study used the potential of synthetic aperture radar (SAR) satellite for surface property changes that lies in backscattering characteristic to map the collapsed structure. The interferometric SAR technique can make a direct measurement of the decorrelation among different acquisition dates by integrating both amplitude and phase information. The damage proxy map (DPM) technique has been employed using four high-resolution Constellation of Small Satellites for Mediterranean basin Observation (COSMO-SkyMed) data spanning from 2020 to 2021 during ascending observation to analyze the collapse of the construction. DPM relies on the difference of pre- and co-event interferometric coherences to depict anomalous changes that indicate collapsed structure in the study area. The DPMs were displayed in a color scale that indicates an increasingly more significant ground surface change in the area covered by the pixels, depicting the collapsed structure. Therefore, the DPM technique with SAR data can be used for damage assessment with accurate and comprehensive detection after an event. In addition, we classify the amplitude information using support vector machine (SVM) and maximum likelihood classification algorithms. An investigation committee was formed to determine the cause of the collapse of the retaining wall and to suggest technical and institutional measures and alternatives to prevent similar incidents from reoccurring. The report from the committee revealed that the incident was caused by a combination of factors that were not carried out properly.

Denoising Auto Encoder 기법을 활용한 진동 데이터 전처리 및 성능비교 (Vibration Data Denoising and Performance Comparison Using Denoising Auto Encoder Method)

  • 장준교;노천명;김성수;이순섭;이재철
    • 해양환경안전학회지
    • /
    • 제27권7호
    • /
    • pp.1088-1097
    • /
    • 2021
  • 기계 장비의 진동 데이터는 필연적으로 노이즈를 포함하고 있다. 이러한 노이즈는 기계 장비의 유지보수를 진행하는데 악영향을 끼친다. 그에 따라 데이터의 노이즈를 얼마나 효과적으로 제거해주냐에 따라 학습 모델의 성능을 좌우한다. 본 논문에서는 시계열 데이터를 전처리 함에 있어 특성추출 과정을 포함하지 않는 Denoising Auto Encoder 기법을 활용하여 데이터의 노이즈를 제거했다. 또한 기계 신호 처리에 널리 사용되는 Wavelet Transform과 성능 비교를 진행했다. 성능비교는 고장 탐지율을 계산하여 진행했으며 보다 정확한 비교를 위해 분류 성능 평가기준 중 하나인 F-1 Score를 계산하여 성능 비교를 진행했다. 고장을 탐지하는 과정에서는 One-Class SVM 기법을 활용하여 고장 데이터를 탐지했다. 성능 비교 결과 고장 진단율과 오차율 측면에서 Denoising Auto Encoder 기법이 Wavelet Transform 기법에 비해 보다 좋은 성능을 나타냈다.

Exploring Support Vector Machine Learning for Cloud Computing Workload Prediction

  • ALOUFI, OMAR
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.374-388
    • /
    • 2022
  • Cloud computing has been one of the most critical technology in the last few decades. It has been invented for several purposes as an example meeting the user requirements and is to satisfy the needs of the user in simple ways. Since cloud computing has been invented, it had followed the traditional approaches in elasticity, which is the key characteristic of cloud computing. Elasticity is that feature in cloud computing which is seeking to meet the needs of the user's with no interruption at run time. There are traditional approaches to do elasticity which have been conducted for several years and have been done with different modelling of mathematical. Even though mathematical modellings have done a forward step in meeting the user's needs, there is still a lack in the optimisation of elasticity. To optimise the elasticity in the cloud, it could be better to benefit of Machine Learning algorithms to predict upcoming workloads and assign them to the scheduling algorithm which would achieve an excellent provision of the cloud services and would improve the Quality of Service (QoS) and save power consumption. Therefore, this paper aims to investigate the use of machine learning techniques in order to predict the workload of Physical Hosts (PH) on the cloud and their energy consumption. The environment of the cloud will be the school of computing cloud testbed (SoC) which will host the experiments. The experiments will take on real applications with different behaviours, by changing workloads over time. The results of the experiments demonstrate that our machine learning techniques used in scheduling algorithm is able to predict the workload of physical hosts (CPU utilisation) and that would contribute to reducing power consumption by scheduling the upcoming virtual machines to the lowest CPU utilisation in the environment of physical hosts. Additionally, there are a number of tools, which are used and explored in this paper, such as the WEKA tool to train the real data to explore Machine learning algorithms and the Zabbix tool to monitor the power consumption before and after scheduling the virtual machines to physical hosts. Moreover, the methodology of the paper is the agile approach that helps us in achieving our solution and managing our paper effectively.

Predictive modeling algorithms for liver metastasis in colorectal cancer: A systematic review of the current literature

  • Isaac Seow-En;Ye Xin Koh;Yun Zhao;Boon Hwee Ang;Ivan En-Howe Tan;Aik Yong Chok;Emile John Kwong Wei Tan;Marianne Kit Har Au
    • 한국간담췌외과학회지
    • /
    • 제28권1호
    • /
    • pp.14-24
    • /
    • 2024
  • This study aims to assess the quality and performance of predictive models for colorectal cancer liver metastasis (CRCLM). A systematic review was performed to identify relevant studies from various databases. Studies that described or validated predictive models for CRCLM were included. The methodological quality of the predictive models was assessed. Model performance was evaluated by the reported area under the receiver operating characteristic curve (AUC). Of the 117 articles screened, seven studies comprising 14 predictive models were included. The distribution of included predictive models was as follows: radiomics (n = 3), logistic regression (n = 3), Cox regression (n = 2), nomogram (n = 3), support vector machine (SVM, n = 2), random forest (n = 2), and convolutional neural network (CNN, n = 2). Age, sex, carcinoembryonic antigen, and tumor staging (T and N stage) were the most frequently used clinicopathological predictors for CRCLM. The mean AUCs ranged from 0.697 to 0.870, with 86% of the models demonstrating clear discriminative ability (AUC > 0.70). A hybrid approach combining clinical and radiomic features with SVM provided the best performance, achieving an AUC of 0.870. The overall risk of bias was identified as high in 71% of the included studies. This review highlights the potential of predictive modeling to accurately predict the occurrence of CRCLM. Integrating clinicopathological and radiomic features with machine learning algorithms demonstrates superior predictive capabilities.

퇴적물 이동경로 식별을 위한 입도경향 분석법의 가능성과 한계 (Grain-Size Trend Analysis for Identifying Net Sediment Transport Pathways: Potentials and Limitations)

  • 김성환;류호상;유근배
    • 대한지리학회지
    • /
    • 제42권4호
    • /
    • pp.469-487
    • /
    • 2007
  • 입도경향 분석법은 파이척도로 표현된 평균입도, 분급, 왜도 등 퇴적물 입도조직변수가 퇴적물의 이동경로를 따라 특정한 경향을 보이는 성질을 이용한 퇴적물 이동경로 식별 방법론이다. 적용이 간편하고 저렴하여 지형학 연구에 널리 응용될 수 있는 가능성을 지니고 있으나 방법론상의 한계도 몇 가지 측면에서 지적되고 있어 주의가 필요하다. 이 연구는 McLaren과 Bowles의 1차원 경로분석법, Gao와 Collins, Le Roux의 2차원 이동벡터법 등 현재까지 정립된 입도경향 분석의 대표적인 세 가지 기법을 비교 평가하여 적절한 활용법을 도출하고, 입도경향 분석의 추후 연구과제를 제안한 것이다. McLaren-Bowles의 1차원 경로분석법은 연구자의 현장경험을 분석에 효과적으로 결합시킬 수 있고 X-분포를 통해 퇴적환경에 대한 해석을 제공해주며 장기적인 퇴적물 순이동 패턴을 파악하는데 효과적이나 연구자의 주관적 해석에 의존해야 한다는 점, 식별할 수 있는 시간 해상도가 낮다는 점등이 단점이다. Gao-Collins의 2차원 이동벡터법은 명확한 절차, 2차원적인 시각화, 세밀한 시간 해상도 등이 장점이지만, 임계거리 선정, 잡벡터 제거과정 등이 문제를 유발할 수 있으므로 분석 시 주의를 요한다. 셋째, Le Roux의 2차원 이동벡터법은 확장된 경험규칙과 조직변수 간의 구배를 고려하고 시간해상도도 세밀하지만, 분석개념이 모호하고 복잡하다. 입도경향 분석은 현장에 대한 연구자의 이해도, 조사하고자 하는 퇴적물 순이동 패턴의 시간적 스케일, 초점을 맞추고자 하는 정보 등에 따라 적절한 기법을 선택하고, 거기에 부합되는 시료채취방안을 기획하는 것이 중요하다. 또한 입도경향 분석이 지형학 연구에 기여하기 위해서는 시료채취 깊이, 교란층의 두께 등 시료채취 과정의 요소들과 퇴적물 순이동 패턴이 지시하는 시간스케일 간의 관계가 체계적으로 규명되어야 한다고 판단된다.

피부색소 흡수 스펙트럼을 이용한 카메라 RGB 신호의 피부색 성분 분석 (Analysis of Skin Color Pigments from Camera RGB Signal Using Skin Pigment Absorption Spectrum)

  • 김정엽
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권1호
    • /
    • pp.41-50
    • /
    • 2022
  • 본 논문에서는 멜라닌과 헤모글로빈 등의 피부 색상을 구성하는 주요한 요소들을 카메라의 RGB 신호로부터 직접 계산하는 방법을 제안한다. 피부 색상의 주요한 요소들은 통상적으로 특정한 장비를 이용하여 분광 반사도를 측정하고, 측정된 빛의 일부 파장에서의 값들을 중심으로 재구성하는 방법을 사용한다. 이와 같은 방법으로 산출된 값들은 멜라닌 지수, 홍반 지수와 같은 것들이 있으며, 분광반사도 측정 장치나 다중스펙트럼 카메라 등의 특수한 장비를 필요로 한다. 일반적인 디지털 카메라로부터 이와 같은 성분요소들에 대한 직접적인 계산방법은 찾아보기 어려우며, 독립성분 분석(Independent Component Analysis)을 이용하여 멜라닌과 헤모글로빈의 농도를 간접적으로 계산하는 방법은 제안되어 있다. 이 방법은 일정한 RGB 영상의 영역을 대상으로 하여, 주성분 분석(Principal Component Analysis)과 유사한 방식으로 멜라닌과 헤모글로빈의 특성벡터를 추출하고, 농도를 계산할 수 있다. 이 방법의 단점은 일정한 영역의 화소 그룹을 입력으로 이용하기 때문에 화소단위의 직접적인 계산이 어렵고, 추출된 특성벡터는 최적화 방식으로 구현하기 때문에 실행할 때마다 다른 값으로 계산되는 경향이 있다. 최종적인 계산은 특성벡터 자체를 활용하지 않고, RGB 좌표계로 다시 변환하여 멜라닌과 헤모글로빈의 성분을 나타내는 영상 형태로 결정된다. 이 방법의 단점을 개선하기 위하여 제안하는 방법은 특성벡터를 활용하여 RGB 좌표계가 아닌 특징 공간에서 멜라닌과 헤모글로빈의 성분 값을 계산하는 것과, 일반적인 디지털 카메라를 이용하여 피부색에 해당하는 분광 반사도를 계산하는 방법, 분광 반사도를 이용하여 멜라닌과 옥시헤모글로빈, 디옥시헤모글로빈, 카로티노이드 등의 피부색소를 구성하는 세부 성분들의 계산방법 등이다. 제안한 방법은 분광 반사도 측정 장치나 다중 스펙트럼 카메라 등의 특수한 장비를 필요로 하지 않으며, 기존 방법과는 달리 화소단위의 직접적인 계산이 가능하고, 반복 실행에도 동일한 특성을 얻을 수 있다. 제안한 방법은 기존에 비하여 성능의 안정성을 나타내는 표준편차가 15% 수준으로 낮게 나타나 6배 정도의 안정적인 성능을 가진 것으로 추정된다.

다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론 (Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections)

  • 김무성;김남규
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.175-197
    • /
    • 2021
  • 최근 딥 러닝 기술의 발전으로 뉴스, 블로그 등 다양한 문서에 포함된 텍스트 분석에 딥 러닝 기술을 활용하는 연구가 활발하게 수행되고 있다. 다양한 텍스트 분석 응용 가운데, 텍스트 분류는 학계와 업계에서 가장 많이 활용되는 대표적인 기술이다. 텍스트 분류의 활용 예로는 정답 레이블이 하나만 존재하는 이진 클래스 분류와 다중 클래스 분류, 그리고 정답 레이블이 여러 개 존재하는 다중 레이블 분류 등이 있다. 특히, 다중 레이블 분류는 여러 개의 정답 레이블이 존재한다는 특성 때문에 일반적인 분류와는 상이한 학습 방법이 요구된다. 또한, 다중 레이블 분류 문제는 레이블과 클래스의 개수가 증가할수록 예측의 난이도가 상승한다는 측면에서 데이터 과학 분야의 난제로 여겨지고 있다. 따라서 이를 해결하기 위해 다수의 레이블을 압축한 후 압축된 레이블을 예측하고, 예측된 압축 레이블을 원래 레이블로 복원하는 레이블 임베딩이 많이 활용되고 있다. 대표적으로 딥 러닝 모델인 오토인코더 기반 레이블 임베딩이 이러한 목적으로 사용되고 있지만, 이러한 기법은 클래스의 수가 무수히 많은 고차원 레이블 공간을 저차원 잠재 레이블 공간으로 압축할 때 많은 정보 손실을 야기한다는 한계가 있다. 이에 본 연구에서는 오토인코더의 인코더와 디코더 각각에 스킵 연결을 추가하여, 고차원 레이블 공간의 압축 과정에서 정보 손실을 최소화할 수 있는 레이블 임베딩 방법을 제안한다. 또한 학술연구정보서비스인 'RISS'에서 수집한 학술논문 4,675건에 대해 각 논문의 초록으로부터 해당 논문의 다중 키워드를 예측하는 실험을 수행한 결과, 제안 방법론이 기존의 일반 오토인코더 기반 레이블 임베딩 기법에 비해 정확도, 정밀도, 재현율, 그리고 F1 점수 등 모든 측면에서 우수한 성능을 나타냄을 확인하였다.

공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석 (Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method)

  • 서성원;최장영;김일중
    • 한국산학기술학회논문지
    • /
    • 제18권1호
    • /
    • pp.688-695
    • /
    • 2017
  • 본 논문은 파력 에너지 수집 장치에 사용할 수 있는 영구자석 선형 동기발전기의 특성 해석에 관한 것이다. 파력 에너지는 요요시스템과 같은 기구로 부터 얻어진다. 영구자석을 이용한 선형 발전기는 영구자석의 자력을 통해 별도의 전원공급이 필요 없고 유지 보수가 간단한 장점을 가지고 있다. 또한 높은 에너지 밀도를 갖는 희토류의 사용으로 영구자석 기기는 소형화 및 경량화가 가능하며 보다 높은 에너지 변환 효율을 얻을 수 있다. 영구자석 선형 동기발전기 특성 해석을 위해 2차원 극 좌표계 및 자기 벡터 포텐셜에 근거하여 영구자석과 전기자 반작용 자계해석을 수행 하였다. 해석 해를 이용하여 정현적인 속도입력에 의해 유도되는 유기기전력의 특성 식을 유도하고, 동일한 방법으로 역기전력 상수, 저항, 자기인덕턴스와 상호인덕턴스와 같은 전기적 파라미터를 얻었다. 본 논문에서 사용한 공간고조파법의 결과는 2차원 유한요소해석법 결과와 비교하여 잘 일치하는 것을 확인하였다. 이 결과는 영구자석 형 선형 발전기의 특성을 이해하는 것과 해석방법의 비교연구, 설계 최적화, 그리고 기기의 동적 모델링에 기여할 수 있다.

스트림 데이타 예측을 위한 슬라이딩 윈도우 기반 점진적 회귀분석 (Incremental Regression based on a Sliding Window for Stream Data Prediction)

  • 김성현;김룡;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권6호
    • /
    • pp.483-492
    • /
    • 2007
  • 최근 센서 네트워크의 발달로 실세계의 많은 데이타가 시간 속성을 갖고 실시간으로 수집되고 있다. 기존의 시계열 데이타 예측 기법은 모델 갱신 없이 예측을 수행하였다. 그러나 스트림 데이타는 매우 빠르게 수집이 되고 시간이 지남에 따라 데이타의 특성이 변경될 수 있으므로 기존의 시계열 예측 기법을 적용하는 것은 적절하지 않다. 따라서 이 논문에서는 슬라이딩 윈도우와 점진적인 회귀분석을 이용한 스트림 데이타 예측 기법을 제안한다. 이 기법은 스트림 데이타를 다중 회귀 모델에 입력하기 위해 차원 분열을 통해 여러 개의 속성으로 분열(Fractal)하고, 변화되는 데이타의 분포를 반영하기 위해 슬라이딩 윈도우 기법을 사용하여 점진적으로 회귀 모델을 갱신한다. 또한 고정 크기 큐를 이용하여 최근의 데이타로만 모델을 유지한다. 이전 데이타의 유지 없이 최소 정보를 갖는 행렬을 통해 모델을 갱신하므로 낮은 공간 복잡도를 갖고 점진적으로 모델을 갱신함으로써 에러율의 증가를 방지한다. 제안된 기법의 타당성은 RME(Relative Mean Error)와 RMSE(Root Mean Square Error)를 이용하여 측정하였고, 실험 결과 다른 기법에 비해 우수하였다.

좌우 양팔의 근육 활성도 변화에 따른 EEG 출력 구분을 위한 CSP 필터의 적용 (Application of CSP Filter to Differentiate EEG Output with Variation of Muscle Activity in the Left and Right Arms)

  • 강병준;전부일;조현찬
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.654-660
    • /
    • 2020
  • 본 논문은 근육 동작시의 뇌파의 출력을 통해 불확실성이 상당히 존재하는 EEG 신호 안에서 좌우완 근육의 동작이나 사용자의 의지가 포함된 근육 신호 출력 시의 특정 부위 뇌파를 추출하여 좌우 동작 구분이 가능한 뇌파의 특징 벡터를 찾아낼 수 있는지를 확인한다. 일반적인 표면 근전도와 비침습적인 방식의 뇌파 추출 방법으로는 내부 신경 전달에 의한 이온화 정도와 전기 전도도의 크기를 통해서 그 동작 신호인지 구분할 수 있는 방법이 존재하지 않는다. 일반 로봇 제어 시스템이나 전기 신호를 통한 관절 및 모터 제어의 경우는 특정 신호의 전달 및 피드백 제어를 통해 관절 및 로봇 제어기를 제어할 수 있는 신호를 확인할 수 있지만, 인간의 인체는 정확한 뇌와 근육간의 프로토콜을 찾을 근거가 부족하다. 따라서 본 논문에서는 피험자의 동작이 이루어질 경우의 뇌파 분석을 통해 좌완의 신호와 우완의 신호를 특정할 만한 근거 신호 또는 특징 벡터를 추출할 수 있는지 확인하기 위해 CSP(Common Spatial Pattern) 필터의 적용 결과 활용하여 효율성을 검증한다. 더불어 검증을 위한 실험 설계를 통해 데이터를 획득하고, 필터 적용 유무에 따른 결과의 변화가 어떠한지 검증하며 구분 정확도를 높일 수 있는 방법을 제안한다.