• Title/Summary/Keyword: Characteristic Pressure

Search Result 1,818, Processing Time 0.036 seconds

A Study of Construction of a Hydrogen Peroxide Supply System for Liquid Rocket Engine (액체로켓엔진 산화제로서의 과산화수소 공급계 구축에 관한 연구)

  • Jeon, Jun-Su;Lee, Yang-Suk;Kim, Young-Mun;Choi, Yu-Ri;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.63-70
    • /
    • 2010
  • A construction process of hydrogen peroxide supply system was investigated to use hydrogen peroxide as an oxidizer of bi-propellant liquid rocket engine. To use hydrogen peroxide as a rocket propellant, it has to be in high concentration over 90%. It is very important to make the supply system free of pollutants, because highly concentrated hydrogen peroxide has a characteristic of hypersensitive reaction to pollutants such as dust and oil sludge. We suggested the cleaning and passivation process of main components to minimize pollutants of the supply system. In conclusion, we verified stability of the constructed supply system by leak test and hot test.

Experimental Study of Combustion Characteristic for Dual Mode Ramjet Combustor (이중모드 램제트 연소기 연소특성 실험적 연구)

  • Shim, ChangYeul;Namkoung, HyuckJoon;Kim, SunYong;Lee, MinSoo;Park, JooHyon;Kim, DongHwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.325-329
    • /
    • 2017
  • In this study, the combustion experiment of hydrocarbon-kerosene fueled dual mode ramjet combustor was performed at mach number 3.5~6.0 conditions. Through the experiment, the temperature and the pressure distribution inside the combustion chamber were measured and the combustion characteristics inside the combustion chamber were investigated. In the mach number 3.5~5.0 range, it was able to identify subsonic combustion in the downstream combustion chamber. In the mach number 6.0 condition, the injected fuel from the injectors was naturally fired, and it was possible to confirm that supersonic combustion was successful in the upper chamber.

  • PDF

The Characteristic Analysis and the Manufacture of Explosive ZPP on PMD using the High Speed Mixing Process (고속 혼화공정을 이용한 PMD용 화약 ZPP 제작 및 특성분석)

  • Kim, Sangbaek;Shim, Jungseob;Kim, Junhyung;Ryu, Byungtae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.445-450
    • /
    • 2017
  • ZPP(Zirconium Potassium Perchlorate) is an igniter composed of potassium perchlorate as oxidizing agent and zirconium as fuel with a Viton binder. ZPP is used to provide ignition in the aerospace, propulsion, automotive industries. This research is investigated for the manufacturing process and characteristics analysis of the ZPP such as the performance and shape/calorimetry/pressure characteristics of the ZPP on PMD(Pyrotechnic Mechanical Device). During the production of ZPP, the mixing process was designed so that the ZPP could be produced in uniform particle size and shape by mixing the raw materials at high speed.

  • PDF

Genesis of Researches on Surges in Pumping Systems in Japan

  • Yamaguchi, Nobuyuki;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.17-27
    • /
    • 2016
  • Researches on the mechanism of surging and the surge behaviors in the systems of pumps, or fans or compressors, and the effects of flow-paths had been initiated and had made a great progress in Japan in the decades from the nineteen-forties to the nineteen-sixties. In 1947, the essential cause of the surges, i.e., self-excited oscillation nature of the flow-system, was discovered analytically by Professor Sumiji Fujii of Tokyo University, and most of the characteristic behaviors of the phenomena had been explained clearly. Successive studies by many other Japanese researchers continued to prove experimentally the mechanism, to extend the analytical studies, and to attempt preventing surge occurrence, etc. in the following two decades. The historical information on the early surge studies could be helpful to some concerned people. At the same time, the basic and plain ways of discussions and reasoning about the phenomena in the pioneering researches could give us much to be learned even in the present time of high-power computing systems. Regrettably, many of the original research works have been published only in Japanese. The present review introduces very briefly the situations in memories of the pioneering researchers and engineers.

A Study on the Vibration Characteristics of 3-Dimension Submerged Vehicle in Consideration of Fluid-Structure Interaction (유체력을 고려한 3차원 수중압력선체의 진동특성에 관한 연구)

  • 손충렬;김경수;변효인
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures or ships is possible only when the fluid-structure interaction is understood, as the whole or part of the structure is in contact with water. This paper introduces two methods to find natural frequency in consideration of fluid-structure interaction, direct coupled vibration analysis and fluid-structure modal coupled vibration analysis. The purpose of this study is to analyze the vibration characteristic of a submerged vehicle to obtain the anti-vibration design data, which could be used in the preliminary design stage. The underwater pressure hull of submerged vehicle is used as the model of this study. The F.E.M. model is meshed by shell and beam elements. Also, considering the inner hull weight, the mass element is distributed in the direction of hull length. Numerical calculations are accomplished by using the commercial B.E.M. code. The characteristics of natural frequency, mode shape and frequency-displacement response are analyzed.

  • PDF

Force Characteristic Analysis of Airflow Type Linear Pulse Mortor by Permeance Method (패미언스법에 의한 공압 부상형 리니어 펄스모터의 힘 특성 해석)

  • 김일남;백수현;윤신용
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.160-169
    • /
    • 1999
  • Linear pulse rootor (LPM) be suitable a field where smooth linear rootion of high precision is required, because it's structured with minute teeth pitch in airgap of between and stator and roover(forcer). Force and position of LPM are effected sensitively by the teeth pitch, air gap, permanent magnet and excitation current. So, LPM is much important to analyze the force characteristics. llis paper was awlied to perrreance roothed for force calculation at airgap. The airgap of LPM is maintained from the pressure generated by an air-bearing. Simplified airflow and permeance methods will be used to calculate the air gap under static conditions. Therefore, the maximum available force is then derived using the coenergy method with variable air gap, also normal force and linear thrust was acquired from variable minute displacement 1[mm]. 1[mm].

  • PDF

Simulation and Characteristic Measurement with Sputtering Conditions of Triode Magnetron Sputter

  • Kim, Hyun-Hoo;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.11-14
    • /
    • 2004
  • An rf triode magnetron sputtering system is designed and installed its construction in vacuum chamber. In order to calibrate the rf triode magnetron sputtering for thin films deposition processes, the effects of different glow discharge conditions were investigated in terms of the deposition rate measurements. The basic parameters for calibrating experiment in this sputtering system are rf power input, gas pressure, plasma current, and target-to-substrate distance. Because a knowledge of the deposition rate is necessary to control film thickness and to evaluate optimal conditions which are an important consideration in preparing better thin films, the deposition rates of copper as a testing material under the various sputtering conditions are investigated. Furthermore, a triode sputtering system designed in our team is simulated by the SIMION program. As a result, it is sure that the simulation of electron trajectories in the sputtering system is confined directly above the target surface by the force of E${\times}$B field. Finally, some teats with the above 4 different sputtering conditions demonstrate that the deposition rate of rf triode magnetron sputtering is relatively higher than that of the conventional sputtering system. This means that the higher deposition rate is probably caused by a high ion density in the triode and magnetron system. The erosion area of target surface bombarded by Ar ion is sputtered widely on the whole target except on both magnet sides. Therefore, the designed rf triode magnetron sputtering is a powerful deposition system.

Properties of Temperature and Brightness Applied on Frequency in Electrodeless Fluorescent Lamp (무전극 형광램프의 주파수 변화에 따른 온도 및 광속 특성)

  • Lee, Joo-Ho;Choi, Gi-Seung;Kim, Nam-Goon;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1733-1734
    • /
    • 2006
  • In recent, it became necessary to develop the technology about electrodeless fluorescent lamp according to demand of the electrodeless fluorescent lamp system that used higher efficiency and advantage of long lifetime. Inductively coupled plasma is commonly used for electrodeless lamp due to its ease of plasma generation. An electric power efficiency of electrodeless fluorescent lamp has big relative property of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self-examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. We have examined temperature and flux characteristic by frequency. Considering using frequency 2.65[MHz], Frequency was changed from 2.05[MHz] to 3.05[MHz] to recognize flux and temperature change of lamp. I used LMS(Lighting Measurement System) to measure flux and IR Camera to measure temperature of lamp.

  • PDF

A study on pre-bonding mechanism of Si wafer at HF pre-treatment (HF 전처리시 실리콘 기판의 초기접합 메카니즘에 관한 연구)

  • Kang, Kyung-Doo;Park, Chin-Sung;Lee, Chae-Bong;Ju, Byung-Kwon;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3313-3315
    • /
    • 1999
  • Si direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera respectively. A bond characteristic on the interface was analyzed by using IT- IR. Si-F bonds on Si surface after HF pre-treatment are replaced by Si-OH during a DI water rinse. Consequently, hydrophobic wafer was bonded by hydrogen bonding of Si $OH{\cdots}(HOH{\cdots}HOH{\cdots}HOH){\cdots}OH-Si$. The bond strength depends on the HF pre-treatment condition before pre- bonding (Min:$2.4kgf/crn^2{\sim}Max:14.9kgf/crn^2$)

  • PDF

Study on the Heat Performance of CNT/carbon Fiber Plane Heater (탄소계 면상발열체 발열 특성 연구)

  • Ko, Yeongung;Kang, Yeongsik;Chung, Yongsik
    • Textile Coloration and Finishing
    • /
    • v.32 no.1
    • /
    • pp.65-71
    • /
    • 2020
  • Electrical energy is used for heating and cooling because electric cars do not have engines and cooling water. The downside is that when the heating and cooling system is applied to electric vehicles, about 40 percent of the energy is spent on heating and cooling, which is less efficient in winter. This has increased demand for electric vehicle battery efficiency. In this study, the condensation and dispersion of carbon nanotubes were controlled, and carbon fibers and composite slurry were manufactured without binders to manufacture paper. Manufactured by content showed the highest heat generation characteristic at 143℃ with a carbon fiber content ratio of 20wt% and confirmed that the heat temperature rises with increasing pressure. The plane heaters made through this study can be applied to a variety of products other than electric vehicles because they can be simplified by process and high temperature.