• Title/Summary/Keyword: Character extraction

Search Result 305, Processing Time 0.035 seconds

The Centering of the Invariant Feature for the Unfocused Input Character using a Spherical Domain System

  • Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.14-22
    • /
    • 2015
  • TIn this paper, a centering method for an unfocused input character using the spherical domain system and the centering character to use the shift invariant feature for the recognition system is proposed. A system for recognition is implemented using the centroid method with coordinate average values, and the results of an above 78.14% average differential ratio for the character features were obtained. It is possible to extract the shift invariant feature using spherical transformation similar to the human eyeball. The proposed method, which is feature extraction using spherical coordinate transform and transformed extracted data, makes it possible to move the character to the center position of the input plane. Both digital and optical technologies are mixed using a spherical coordinate similar to the 3 dimensional human eyeball for the 2 dimensional plane format. In this paper, a centering character feature using the spherical domain is proposed for character recognition, and possibilities for the recognized possible character shape as well as calculating the differential ratio of the centered character using a centroid method are suggested.

Implementation of a Feature Extraction Chip for High Speed OCR (고속 문자 인식을 위한 특정 추출용 칩의 구현)

  • 김형구;강선미;김덕진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.104-110
    • /
    • 1994
  • We proposed a high speed feature extraction algorithm and developed a feature vector extraction chip for high speed character recognition. It is hard to implement a high speed OCR by software alone with statistical method . Thus, the whole recognition process is divided into functional steps, then pipeline processed so that high speed processing is possible with temporal parallelism of the steps. In this paper we discuss the feature extraction step of the functional steps. To extract feature vector, a character image is normalized to 40$\times$40 pixels. Then, it is divided into 5$\times$5 subregions and 4x4 subregions to construct 41 overlapped subregions(10x10 pixels). It requires to execute more than 500 commands to extract a feature vector of a subregion by software. The proposed algorithm, however, requires only 10 cycles since it can extract a feature vector of a columm of subregion in one cycle with array structure. Thus, it is possible to process 12.000 characters per second with the proposed algorithm. The chip is implemented using EPLD and the effectiveness is proved by developing an OCR using it.

  • PDF

Text Region Extraction using Pattern Histogram of Character-Edge Map in Natural Images (문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에서의 텍스트 영역 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Kwon, Kyo-Hyun;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.220-224
    • /
    • 2006
  • The text to be included in the natural images has many important information in the natural image. Therefore, if we can extract the text in natural images, It can be applied to many important applications. In this paper, we propose a text region extraction method using pattern histogram of character-edge map. We extract the edges with the Canny edge detector and creates 16 kind of edge map from an extracted edges. And then we make a character-edge map of 8 kinds that have a character feature with a combination of an edge map. We extract text region using 8 kinds of character-edge map and 16 kind of edge map. Verification of text candidate region uses analysis of a character-edge map pattern histogram and structural feature of text region. The method to propose experimented with various kind of the natural images. The proposed approach extracted text region from a natural images to have been composed of a complex background, various letters, various text colors effectively.

  • PDF

Text extraction in images using simplify color and edges pattern analysis (색상 단순화와 윤곽선 패턴 분석을 통한 이미지에서의 글자추출)

  • Yang, Jae-Ho;Park, Young-Soo;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.33-40
    • /
    • 2017
  • In this paper, we propose a text extraction method by pattern analysis on contour for effective text detection in image. Text extraction algorithms using edge based methods show good performance in images with simple backgrounds, The images of complex background has a poor performance shortcomings. The proposed method simplifies the color of the image by using K-means clustering in the preprocessing process to detect the character region in the image. Enhance the boundaries of the object through the High pass filter to improve the inaccuracy of the boundary of the object in the color simplification process. Then, by using the difference between the expansion and erosion of the morphology technique, the edges of the object is detected, and the character candidate region is discriminated by analyzing the pattern of the contour portion of the acquired region to remove the unnecessary region (picture, background). As a final result, we have shown that the characters included in the candidate character region are extracted by removing unnecessary regions.

Implementation of the Container ISO Code Recognition System for Real-Time Processing (실시간 처리를 위한 컨테이너 ISO코드 인식시스템의 구현)

  • Choi Tae-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1478-1489
    • /
    • 2006
  • This paper describes system to extract ISO codes in container image. A container ISO code recognition system for real-time processing is made of 5 core parts which are container ISO code detection and image acquisition, ISO code region extraction, individual character extraction, character recognition and database. Among them, the accuracy of ISO code extraction can affect significantly the accuracy of system recognition rate, and also the more exact extraction of ISO code is required in various weather and environment conditions. The proposed system produces binary of the ISO code's template lesions using an adaptive thresholding, extracts candidate regions containing distribution of ISO code, and recognizes ISO codes as detecting a final region through the verifications by using character distribution characteristics of ISO code among the extracted candidates. Experimental results reveal that ISO codes can be efficiently extracted by the proposed method.

A Character Identification Method using Postpositions for Animate Nouns in Korean Novels (한국어 소설에서 유정명사용 조사 기반의 인물 추출 기법)

  • Park, Taekeun;Kim, Seung-Hoon
    • Journal of Information Technology Services
    • /
    • v.15 no.3
    • /
    • pp.115-125
    • /
    • 2016
  • Novels includes various character names, depending on the genre and the spatio-temporal background of the novels and the nationality of characters. Besides, characters and their names in a novel are created by the author's pen and imagination. As a result, any proper noun dictionary cannot include all kind of character names which have been created or will be created by authors. In addition, since Korean does not have capitalization feature, character names in Korean are harder to detect than those in English. Fortunately, however, Korean has postpositions, such as "-ege" and "hante", used by a sentient being or an animate object (noun). We call such postpositions as animate postpositions in this paper. In a previous study, the authors manually selected character names by referencing both Wikipedia and well-known people dictionaries after utilizing Korean morpheme analyzer, a proper noun dictionary, postpositions (e.g., "-ga", "-eun", "-neun", "-eui", and "-ege"), and titles (e.g., "buin"), in order to extract social networks from three novels translated into or written in Korean. But, the precision, recall, and F-measure rates of character identification are not presented in the study. In this paper, we evaluate the quantitative contribution of animate postpositions to character identification from novels, in terms of precision, recall, and F-measure. The results show that utilizing animate postpositions is a valuable and powerful tool in character identification without a proper noun dictionary from novels translated into or written in Korean.

A Study on Extraction of text region using shape analysis of text in natural scene image (자연영상에서 문자의 형태 분석을 이용한 문자영역 추출에 관한 연구)

  • Yang, Jae-Ho;Han, Hyun-Ho;Kim, Ki-Bong;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.61-68
    • /
    • 2018
  • In this paper, we propose a method of character detection by analyzing image enhancement and character type to detect characters in natural images that can be acquired in everyday life. The proposed method emphasizes the boundaries of the object part using the unsharp mask in order to improve the detection rate of the area to be recognized as a character in a natural image. By using the boundary of the enhanced object, the character candidate region of the image is detected using Maximal Stable Extermal Regions (MSER). In order to detect the region to be judged as a real character in the detected character candidate region, the shape of each region is analyzed and the non-character region other than the region having the character characteristic is removed to increase the detection rate of the actual character region. In order to compare the objective test of this paper, we compare the detection rate and the accuracy of the character region with the existing methods. Experimental results show that the proposed method improves the detection rate and accuracy of the character region over the existing character detection method.

A Study on the Fractal Attractor Creation and Analysis of the Printed Korean Characters

  • Shon, Young-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • Chaos theory is a study researching the irregular, unpredictable behavior of deterministic and non-linear dynamical system. The interpretation using Chaos makes us evaluate characteristic existing in status space of system by tine series, so that the extraction of Chaos characteristic understanding and those characteristics enables us to do high precision interpretation. Therefore, This paper propose the new method which is adopted in extracting character features and recognizing characters using the Chaos Theory. Firstly, it gets features of mesh feature, projection feature and cross distance feature from input character images. And their feature is converted into time series data. Then using the modified Henon system suggested in this paper, it gets last features of character image after calculating Box-counting dimension, Natural Measure, information bit and information dimension which are meant fractal dimension. Finally, character recognition is performed by statistically finding out the each information bit showing the minimum difference against the normalized pattern database. An experimental result shows 99% character classification rates for 2,350 Korean characters (Hangul) using proposed method in this paper.

A Method for Clustering Noun Phrases into Coreferents for the Same Person in Novels Translated into Korean (한국어 번역 소설에서 인물명 명사구의 동일인물 공통참조 클러스터링 방법)

  • Park, Taekeun;Kim, Seung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.3
    • /
    • pp.533-542
    • /
    • 2017
  • Novels include various character names, depending on the genre and the spatio-temporal background of the novels and the nationality of characters. Besides, characters and their names in a novel are created by the author's pen and imagination. As a result, any proper noun dictionary cannot include all kinds of character names. In addition, the novels translated into Korean have character names consisting of two or more nouns (such as "Harry Potter"). In this paper, we propose a method to extract noun phrases for character names and to cluster the noun phrases into coreferents for the same character name. In the extraction of noun phrases, we utilize KKMA morpheme analyzer and CPFoAN character identification tool. In clustering the noun phrases into coreferents, we construct a directed graph with the character names extracted by CPFoAN and the extracted noun phrases, and then we create name sets for characters by traversing connected subgraphs in the directed graph. With four novels translated into Korean, we conduct a survey to evaluate the proposed method. The results show that the proposed method will be useful for speaker identification as well as for constructing the social network of characters.

Character Classification with Triangular Distribution

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.209-217
    • /
    • 2019
  • Due to the development of artificial intelligence and image recognition technology that play important roles in the field of 4th industry, office automation systems and unmanned automation systems are rapidly spreading in human society. The proposed algorithm first finds the variances of the differences between the tile values constituting the learning characters and the experimental character and then recognizes the experimental character according to the distribution of the three learning characters with the smallest variances. In more detail, for 100 learning data characters and 10 experimental data characters, each character is defined as the number of black pixels belonging to 15 tile areas. For each character constituting the experimental data, the variance of the differences of the tile values of 100 learning data characters is obtained and then arranged in the ascending order. After that, three learning data characters with the minimum variance values are selected, and the final recognition result for the given experimental character is selected according to the distribution of these character types. Moreover, we compare the recognition result with the result made by a neural network of basic structure. It is confirmed that satisfactory recognition results are obtained through the processes that subdivide the learning characters and experiment characters into tile sizes and then select the recognition result using variances.