• Title/Summary/Keyword: Chaperone-mediated autophagy

Search Result 8, Processing Time 0.02 seconds

Polygonatum sibiricum component liquiritigenin restrains breast cancer cell invasion and migration by inhibiting HSP90 and chaperone-mediated autophagy

  • Suli Xu;Zhao Ma;Lihua Xing;Weiqing Cheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.4
    • /
    • pp.379-387
    • /
    • 2024
  • Breast cancer (BC) is most commonly diagnosed worldwide. Liquiritigenin is a flavonoid found in various species of the Glycyrrhiza genus, showing anti-tumor activity. This article was to explore the influences of liquiritigenin on the biological behaviors of BC cells and its underlying mechanism. BC cells were treated with liquiritigenin alone or transfected with oe-HSP90 before liquiritigenin treatment. RT-qPCR and Western blotting were employed to examine the levels of HSP90, Snail, E-cadherin, HSC70, and LAMP-2A. Cell viability, proliferation, migration, and invasion were evaluated by performing MTT, colony formation, scratch, and Transwell assays, respectively. Liquiritigenin treatment reduced HSP90 and Snail levels and enhanced E-cadherin expression as well as inhibiting the proliferation, migration, and invasion of BC cells. Moreover, liquiritigenin treatment decreased the expression of HSC70 and LAMP-2A, proteins related to chaperone-mediated autophagy (CMA). HSP90 overexpression promoted the CMA, invasion, and migration of BC cells under liquiritigenin treatment. Liquiritigenin inhibits HSP90-mediated CMA, thereby suppressing BC cell growth.

Regulation of amyloid precursor protein processing by its KFERQ motif

  • Park, Ji-Seon;Kim, Dong-Hou;Yoon, Seung-Yong
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.337-343
    • /
    • 2016
  • Understanding of trafficking, processing, and degradation mechanisms of amyloid precursor protein (APP) is important because APP can be processed to produce β-amyloid (Aβ), a key pathogenic molecule in Alzheimer's disease (AD). Here, we found that APP contains KFERQ motif at its C-terminus, a consensus sequence for chaperone-mediated autophagy (CMA) or microautophagy which are another types of autophagy for degradation of pathogenic molecules in neurodegenerative diseases. Deletion of KFERQ in APP increased C-terminal fragments (CTFs) and secreted N-terminal fragments of APP and kept it away from lysosomes. KFERQ deletion did not abolish the interaction of APP or its cleaved products with heat shock cognate protein 70 (Hsc70), a protein necessary for CMA or microautophagy. These findings suggest that KFERQ motif is important for normal processing and degradation of APP to preclude the accumulation of APP-CTFs although it may not be important for CMA or microautophagy.

Ebb-and-Flow of Macroautophagy and Chaperone-Mediated Autophagy in Raji Cells Induced by Starvation and Arsenic Trioxide

  • Li, Cai-Li;Wei, Hu-Lai;Chen, Jing;Wang, Bei;Xie, Bei;Fan, Lin-Lan;Li, Lin-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5715-5719
    • /
    • 2014
  • Autophagy is crucial in the maintenance of homeostasis and regenerated energy of mammalian cells. Macroautophagy and chaperone-mediated autophagy(CMA) are the two best-identified pathways. Recent research has found that in normal cells, decline of macroautophagy is appropriately parallel with activation of CMA. However, whether it is also true in cancer cells has been poorly studied. Here we focused on cross-talk and conversion between macroautophagy and CMA in cultured Burkitt lymphoma Raji cells when facing serum deprivation and exposure to a toxic compound, arsenic trioxide. The results showed that both macroautophagy and CMA were activated sequentially instead of simultaneously in starvation-induced Raji cells, and macroautophagy was quickly activated and peaked during the first hours of nutrition deprivation, and then gradually decreased to near baseline. With nutrient deprivation persisted, CMA progressively increased along with the decline of macroautophagy. On the other hand, in arsenic trioxide-treated Raji cells, macroautophagy activity was also significantly increased, but CMA activity was not rapidly enhanced until macroautophagy was inhibited by 3-methyladenine, an inhibitor. Together, we conclude that cancer cells exhibit differential responses to diverse stressor-induced damage by autophagy. The sequential switch of the first-aider macroautophagy to the homeostasis-stabilizer CMA, whether active or passive, might be conducive to the adaption of cancer cells to miscellaneous intracellular or extracellular stressors. These findings must be helpful to understand the characteristics, compensatory mechanisms and answer modes of different autophagic pathways in cancer cells, which might be very important and promising to the development of potential targeting interventions for cancer therapies via regulation of autophagic pathways.

Determination of HIF-1α degradation pathways via modulation of the propionyl mark

  • Kwanyoung Jeong;Jinmi Choi;Ahrum Choi;Joohee Shim;Young Ah Kim;Changseok Oh;Hong-Duk Youn;Eun-Jung Cho
    • BMB Reports
    • /
    • v.56 no.4
    • /
    • pp.252-257
    • /
    • 2023
  • The hypoxia-inducible factor-1α (HIF-1α) is a key regulator of hypoxic stress under physiological and pathological conditions. HIF-1α protein stability is tightly regulated by the ubiquitin-proteasome system (UPS) and autophagy in normoxia, hypoxia, and the tumor environment to mediate the hypoxic response. However, the mechanisms of how the UPS and autophagy interplay for HIF-1α proteostasis remain unclear. Here, we found a HIF-1α species propionylated at lysine (K) 709 by p300/CREB binding protein (CBP). HIF-1α stability and the choice of degradation pathway were affected by HIF-1α propionylation. K709-propionylation prevented HIF-1α from degradation through the UPS, while activated chaperon-mediated autophagy (CMA) induced the degradation of propionylated and nonpropionylated HIF-1α. CMA contributed to HIF-1α degradation in both normoxia and hypoxia. Furthermore, the pan-cancer analysis showed that CMA had a significant positive correlation with the hypoxic signatures, whereas SIRT1, responsible for K709-depropionylation correlated negatively with them. Altogether, our results revealed a novel mechanism of HIF-1α distribution into two different degradation pathways.

Autophagy and Digestive Disorders: Advances in Understanding and Therapeutic Approaches

  • Thein, Wynn;Po, Wah Wah;Choi, Won Seok;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.353-364
    • /
    • 2021
  • The gastrointestinal (GI) tract is a series of hollow organs that is responsible for the digestion and absorption of ingested foods and the excretion of waste. Any changes in the GI tract can lead to GI disorders. GI disorders are highly prevalent in the population and account for substantial morbidity, mortality, and healthcare utilization. GI disorders can be functional, or organic with structural changes. Functional GI disorders include functional dyspepsia and irritable bowel syndrome. Organic GI disorders include inflammation of the GI tract due to chronic infection, drugs, trauma, and other causes. Recent studies have highlighted a new explanatory mechanism for GI disorders. It has been suggested that autophagy, an intracellular homeostatic mechanism, also plays an important role in the pathogenesis of GI disorders. Autophagy has three primary forms: macroautophagy, microautophagy, and chaperone-mediated autophagy. It may affect intestinal homeostasis, host defense against intestinal pathogens, regulation of the gut microbiota, and innate and adaptive immunity. Drugs targeting autophagy could, therefore, have therapeutic potential for treating GI disorders. In this review, we provide an overview of current understanding regarding the evidence for autophagy in GI diseases and updates on potential treatments, including drugs and complementary and alternative medicines.

The Impact of Autophagy on the Cigarette Smoke Extract-Induced Apoptosis of Bronchial Epithelial Cells

  • Lee, Chang-Hoon;Lee, Kyoung-Hee;Jang, An-Hee;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Background: Previous studies report that apoptosis and autophagy are involved in the pathogenesis of emphysema, and macroautophagy is one of the processes regulating the apoptosis pathway. However, few studies have evaluated whether chaperone-mediated autophagy (CMA) contributes to the regulation of apoptosis. In this study, we investigated the impact of autophagy, including both macroautophagy and CMA, on the apoptosis in bronchial epithelial cells. Methods: Cigarette smoke extract (CSE) was injected intratracheally into C57BL/6 mice, and emphysema and apoptosis were evaluated in the lungs. After treatment with CSE, apoptosis, macroautophagy, and CMA were measured in BEAS2-B cells, and the impact of autophagy on the apoptosis was evaluated following knockdown of autophagy-related genes by short interfering RNAs (siRNAs). Results: Intratracheal CSE injection resulted in the development of emphysema and an increase in apoptosis in mice. CSE increased the apoptosis in BEAS2-B cells, and also elevated the expression of proteins related to both macroautophagy and CMA in BEAS2-B cells. The knockdown experiment with siRNAs showed that macroautophagy increases apoptosis in BEAS2-B cells, while CMA suppresses apoptosis. Conclusion: The intratracheal injection of CSE induces pulmonary emphysema and an increase in apoptosis in mice. CSE also induces apoptosis, macroautophagy, and CMA of bronchial epithelial cells. Macroautophagy and CMA regulate apoptosis in opposite directions.

Celecoxib Enhances Susceptibility of Multidrug Resistant Cancer Cells to 17-Allylamino-17-demethoxy geldanamycin through Dual Induction of Apoptotic and Autophagic Cell Death (Celecoxib의 apoptotic 및 autophagic cell death 유도에 의한 항암제 다제내성 암세포의 17-allylamino-17-demethoxygeldanamycin 감수성 증강)

  • Moon, Hyun-Jung;Park, So-Young;Lee, Su-Hoon;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.778-785
    • /
    • 2018
  • Autophagy is a complex signaling process and has been implicated in tumor suppression and anticancer therapy resistance. Autophagy can produce tumor-suppressive effect by inducing autophagic cell death, either in collaboration with apoptosis. In this current study, we found that celecoxib (CCB), a nonsteroidal anti-inflammatory drug (NSAID) with multifaceted effects, induced autophagy including enhanced LC3 conversion (LC3-I to LC3-II) and reduced autophagy substrate protein p62 level in multidrug-resistant (MDR) cancer cells. CCB sensitized human multidrug resistant (MDR) cancer cells to the ansamycin-based HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), a benzoquinoid ansamycin, which causes the degradation of several oncogenic and signaling proteins, by inducing autophagic cell death and apoptosis. CCB significantly augmented 17-AAG-mediated level of LC3-II/LC-I, indicating the combined effect of 17-AAG and CCB on the induction of autophagy. Autophagic degradation of mutant p53 (mutp53) and activation of caspase-3 in 17-AAG-treated MDR cells were accelerated by CCB. Inhibition of caspase-3-mediated apoptotic pathway by Z-DEVD-FMK, a caspase-3 inhibitor, did not completely block CCB-induced cell death in MCF7-MDR cells. In addition, treatment of MDR cells with Z-DEVD-FMK failed to prevent activation of autophagy by combined treatment with 17-AAG and CCB. Based on our findings, the ability of clinically used drug CCB to induce autophagy has important implications for its development as a sensitizing agent in combination with Hsp90 inhibitor of MDR cancer.

Proteasome Inhibitor-Induced IκB/NF-κB Activation is Mediated by Nrf2-Dependent Light Chain 3B Induction in Lung Cancer Cells

  • Lee, Kyoung-Hee;Lee, Jungsil;Woo, Jisu;Lee, Chang-Hoon;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1008-1015
    • /
    • 2018
  • $I{\kappa}B$, a cytoplasmic inhibitor of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$), is reportedly degraded via the proteasome. However, we recently found that long-term incubation with proteasome inhibitors (PIs) such as PS-341 or MG132 induces $I{\kappa}B{\alpha}$ degradation via an alternative pathway, lysosome, which results in $NF-{\kappa}B$ activation and confers resistance to PI-induced lung cancer cell death. To enhance the anti-cancer efficacy of PIs, elucidation of the regulatory mechanism of PI-induced $I{\kappa}B{\alpha}$ degradation is necessary. Here, we demonstrated that PI up-regulates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) via both de novo protein synthesis and Kelch-like ECH-associated protein 1 (KEAP1) degradation, which is responsible for $I{\kappa}B{\alpha}$ degradation via macroautophagy activation. PIs increased the protein level of light chain 3B (LC3B, macroautophagy marker), but not lysosome-associated membrane protein 2a (Lamp2a, the receptor for chaperone-mediated autophagy) in NCI-H157 and A549 lung cancer cells. Pretreatment with macroautophagy inhibitor or knock-down of LC3B blocked PI-induced $I{\kappa}B{\alpha}$ degradation. PIs up-regulated Nrf2 by increasing its transcription and mediating degradation of KEAP1 (cytoplasmic inhibitor of Nrf2). Overexpression of dominant-negative Nrf2, which lacks an N-terminal transactivating domain, or knock-down of Nrf2 suppressed PI-induced LC3B protein expression and subsequent $I{\kappa}B{\alpha}$ degradation. Thus, blocking of the Nrf2 pathway enhanced PI-induced cell death. These findings suggest that Nrf2-driven induction of LC3B plays an essential role in PI-induced activation of the $I{\kappa}B$/$NF-{\kappa}B$ pathway, which attenuates the anti-tumor efficacy of PIs.