Acknowledgement
This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (NRF-2022R1A2C2003505, 2021R1F1A1049941, and NRF-2019R1A5A2027340 to E.-J.C., NRF-2022R1C1C2005612 to J.C., and NRF2022R1A5A102641311 to H.-D.Y.).
References
- Wang GL, Jiang BH, Rue EA and Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92, 5510-5514 https://doi.org/10.1073/pnas.92.12.5510
- Arany Z, Huang LE, Eckner R et al (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci U S A 93, 12969-12973 https://doi.org/10.1073/pnas.93.23.12969
- Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7, 345-350 https://doi.org/10.1016/S1471-4914(01)02090-1
- Hong SS, Lee H and Kim KW (2004) HIF-1alpha: a valid therapeutic target for tumor therapy. Cancer Res Treat 36, 343-353 https://doi.org/10.4143/crt.2004.36.6.343
- Dengler VL, Galbraith MD and Espinosa JM (2014) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49, 1-15 https://doi.org/10.3109/10409238.2013.838205
- Epstein ACR, Gleadle JM, McNeill LA et al (2001) C-elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43-54 https://doi.org/10.1016/S0092-8674(01)00507-4
- Ivan M, Kondo K, Yang HF et al (2001) HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O-2 sensing. Science 292, 464-468 https://doi.org/10.1126/science.1059817
- Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275 https://doi.org/10.1038/20459
- Cockman ME, Masson N, Mole DR et al (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275, 25733-25741 https://doi.org/10.1074/jbc.M002740200
- Boya P, Reggiori F and Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15, 713-720 https://doi.org/10.1038/ncb2788
- Mizushima N (2018) A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol 20, 521-527 https://doi.org/10.1038/s41556-018-0092-5
- Kaushik S and Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19, 365-381 https://doi.org/10.1038/s41580-018-0001-6
- Hubbi ME, Hu H, Kshitiz, Ahmed I, Levchenko A and Semenza GL (2013) Chaperone-mediated autophagy targets hypoxia-inducible factor-1 alpha (HIF-1 alpha) for lysosomal degradation. J Biol Chem 288, 10703-10714 https://doi.org/10.1074/jbc.M112.414771
- Ferreira JV, Fofo H, Bejarano E et al (2013) STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy 9, 1349-1366 https://doi.org/10.4161/auto.25190
- Ferreira JV, Soares AR, Ramalho JS, Pereira P and Girao H (2015) K63 linked ubiquitin chain formation is a signal for HIF1A degradation by chaperone-mediated autophagy. Sci Rep 5, 10210
- Prabakaran S, Lippens G, Steen H and Gunawardena J (2012) Post-translational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med 4, 565-583 https://doi.org/10.1002/wsbm.1185
- Kebede AF, Nieborak A, Shahidian LZ et al (2017) Histone propionylation is a mark of active chromatin. Nat Struct Mol Biol 24, 1048-1056 https://doi.org/10.1038/nsmb.3490
- Sabari BR, Tang Z, Huang H et al (2015) Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell 58, 203-215 https://doi.org/10.1016/j.molcel.2015.02.029
- Geng H, Liu Q, Xue C et al (2012) HIF1 alpha protein stability is increased by acetylation at lysine 709. J Biol Chem 287, 35496-35505 https://doi.org/10.1074/jbc.M112.400697
- Lim JH, Lee YM, Chun YS, Chen J, Kim JE and Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1 alpha. Mol Cell 38, 864-878 https://doi.org/10.1016/j.molcel.2010.05.023
- Ghosh R, Gillaspie JJ, Campbell KS, Symons JD, Boudina S and Pattison JS (2022) Chaperone-mediated autophagy protects cardiomyocytes against hypoxic-cell death. Am J Physiol Cell Physiol 323, 1555-1575 https://doi.org/10.1152/ajpcell.00369.2021
- Dohi E, Tanaka S, Seki T et al (2012) Hypoxic stress activates chaperone-mediated autophagy and modulates neuronal cell survival. Neurochem Int 60, 431-442 https://doi.org/10.1016/j.neuint.2012.01.020
- Finkel T, Deng CX and Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460, 587-591 https://doi.org/10.1038/nature08197
- Houtkooper RH, Pirinen E and Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13, 225-238 https://doi.org/10.1038/nrm3293
- Jeong JW, Bae MK, Ahn MY et al (2002) Regulation and destabilization of HIF-1 alpha by ARD1-mediated acetylation. Cell 111, 709-720 https://doi.org/10.1016/S0092-8674(02)01085-1
- Kim Y, Nam HJ, Lee J et al (2016) Methylation-dependent regulation of HIF-1 alpha stability restricts retinal and tumour angiogenesis. Nat Commun 7, 10347
- Fluegel D, Goerlach A, Michiels C and Kietzmann T (2007) Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1 alpha and mediates its destabilization in a VHL-independent manner. Mol Cell Biol 27, 3253-3265 https://doi.org/10.1128/MCB.00015-07
- Wang XJ, Yu J, Wong SH et al (2013) A novel crosstalk between two major protein degradation systems Regulation of proteasomal activity by autophagy. Autophagy 9, 1500-1508 https://doi.org/10.4161/auto.25573
- Seo KS, Park JH, Heo JY et al (2015) SIRT2 regulates tumour hypoxia response by promoting HIF-1α hydroxylation. Oncogene 34, 1354-1362 https://doi.org/10.1038/onc.2014.76
- Tomita T, Hamazaki J, Hirayama S, McBurney MW, Yashiroda H and Murata S (2015) Sirt1-deficiency causes defective protein quality control. Sci Rep 5, 12613
- Joshi S, Singh AR and Durden DL (2014) MDM2 regulates hypoxic hypoxia-inducible factor 1 alpha stability in an e3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner. J Biol Chem 289, 22785-22797 https://doi.org/10.1074/jbc.M114.587493
- Simithy J, Sidoli S, Yuan ZF et al (2017) Characterization of histone acylations links chromatin modifications with metabolism. Nat Commun 8, 1141
- Furuta E, Pai SK, Zhan R et al (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 68, 1003-1011 https://doi.org/10.1158/0008-5472.CAN-07-2489
- Bensaad K, Favaro E, Lewis CA et al (2014) Fatty acid uptake and lipid storage induced by HIF-1 alpha contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep 9, 349-365 https://doi.org/10.1016/j.celrep.2014.08.056
- Schug ZT, Peck B, Jones DT et al (2015) Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27, 57-71 https://doi.org/10.1016/j.ccell.2014.12.002
- Trefely S, Huber K, Liu J et al (2022) Quantitative subcellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation. Mol Cell 82, 447-462 e446