• Title/Summary/Keyword: Chaotic Oscillator

Search Result 16, Processing Time 0.023 seconds

Chaotic Phenomena in MEMS with Duffing Equation (Duffing 방정식을 가진 MEMS에서의 카오스 현상)

  • Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.709-716
    • /
    • 2011
  • Recently, there are many difficult for maintenance in the power in established sensor networks. In order to solve this problems, the power development has been interested using vibration in MEMS that insert the MEMS oscillator. In this paper, we propose the MEMS system with Duffing equation to generate vibration signal that can be use power signal in MEMS and confirm and verify the chaotic behaviors in vibration signal of MEMS by computer simulation. As a verification methods, we confirm the existence of period motion and chaotic motion by parameter variation through the time series, phase portrait, power spectrum and poincare map.

Assessment of Chaotic-Threshold Model on Integral Pulse Frequency Modulation for HRV Analysis (심박변이도 해석을 위한 가상 심장박동 발진기의 카오스-임계치 모델 성능 평가)

  • Jeung, Gyeo-Wun;Kim, Jeong-Hwan;Lee, Jeong-Whan;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.581-586
    • /
    • 2017
  • The well-known Integral Pulse Frequency Modulation (IPFM) cardiac oscillator has been used to generate the heart beat fluctuations as a representation of the modulatory autonomic nervous activity in terms of sympathetic and parasympathetic state. The IPFM model produces heartbeats by integrating the modulated sinusoid signals and applying the threshold of unity or chaotic threshold levels. This study aims at evaluating the performance of IPFM model by analyzing the influence of the threshold level with comparatively applying preset threshold of unity and Logistic-map and Henon-map chaotic-threshold. Based on our simulated results with interpreting the spectral features of Heart Rate Variability (HRV), we can conclude that the IPFM model with preset threshold level of unity can generate the optimal heartbeat variations int the sense of clinically valid heartbeats.

A Study on a Chaos Oscillator Circuit with Optocoupler (광결합기를 이용한 카오스 발진기 회로 연구)

  • Jeong, Dong-Ho;Jeong, Seol-Hee;Cheong, Kyung-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.294-297
    • /
    • 2002
  • We investigate the dynamics of a non-autonomous chaotic oscillator including an optocoupler that shows a periode-doubling and a chaos dynamics under any conditions of input circuit via experiments. Its characteristics was found to coincide input frequency components with output's. But, the relationship between input signals and output signals is different according to the amplitude of driving input voltage and circuit structure. Thus, this result can be applied to a wide variety of optical systems in the future.

  • PDF

Three-dimensional dynamics of vortex-induced vibration of a pipe with internal flow in the subcritical and supercritical regimes

  • Duan, Jinlong;Chen, Ke;You, Yunxiang;Wang, Renfeng;Li, Jinlong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.692-710
    • /
    • 2018
  • The Three-dimensional (3-D) dynamical behaviors of a fluid-conveying pipe subjected to vortex-induced vibration are investigated with different internal flow velocity ${\nu}$. The values of the internal flow velocity are considered in both subcritical and supercritical regimes. During the study, the 3-D nonlinear equations are discretized by the Galerkin method and solved by a fourth-order Runge-Kutta method. The results indicate that for a constant internal flow velocity ${\nu}$ in the subcritical regime, the peak Cross-flow (CF) amplitude increases firstly and then decrease accompanied by amplitude jumps with the increase of the external reduced velocity. While two response bands are observed in the In-line (IL) direction. For the dynamics in the lock-in condition, 3-D periodic, quasi-periodic and chaotic vibrations are observed. A variety of CF and IL responses can be detected for different modes with the increase of ${\nu}$. For the cases studied in the supercritical regime, the dynamics shows a great diversity with that in the subcritical regime. Various dynamical responses, which include 3-D periodic, quasi-periodic as well as chaotic motions, are found while both CF and IL responses are coupled while ${\nu}$ is beyond the critical value. Besides, the responses corresponding to different couples of ${\mu}_1$ and ${\mu}_2$ are obviously distinct from each other.

Development of Nonlinear Low-Order Climate Model and Simulated ENSO Characteristics (비선형 저차 기후모델 개발과 모의된 ENSO 특징)

  • Wie, Jieun;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.7
    • /
    • pp.611-616
    • /
    • 2015
  • El Nino and Southern Oscillation (ENSO) presents a broad band (2-8 year) variability and slowly changing amplitude and period, which are respectively referred to as ENSO irregularity and ENSO modulation. In this study, we developed a nonlinear low-order climate model by combining the Lorenz-63 model of nonlinear atmospheric variability and a simple ENSO model with recharge oscillator characteristics. The model successfully reproduced the ENSO-like variations in the sea surface temperature of eastern Pacific, such as the peak period, wide periodicity, and decadal modulations. The results show that the chaotic atmospheric forcing can lead to ENSO irregularity and ENSO modulation. It is also suggested the high probability of La Nina development could be associated with strong convection of the western warm pool. Although it is simple, this model is expected to be used in research on long-term climate change because it well captures the nonlinear air-sea interactions in the equatorial Pacific.

The Effect of Heat on the Spiking Patterns of the Cells in Aplysia (군소 세포의 발화 형태에 미치는 열자극 효과)

  • Hyun, Nam-Gyu
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2007
  • Fruitful findings have been produced from five out of sixty cells which were obtained from each 63 individual Aplisia caught at the Jeju coast. Spiking patterns of three out of five cells, such as relaxation oscillator, bursting within a short time of the inter-burst interval, chaotic bursting, period doubling sequences, bursting with long trains of action potentials separated by short silent periods, regular repeated beating or elliptic bursting, and silent states had been changed in order as the temperature was lowered to $10^{\circ}C\;from\;32^{\circ}C$. In the intervals of every about 40 minutes repeated ups and downs of temperature produced similar firing patterns at the allowable temperature ranges. The other two cells showed difference from these. The amplitudes of the action potentials of the two cells will not be highly decreased in 24 hours. Average spike frequencies, the inter-burst interval, peak to peak spike amplitude of action potentials, minimum potential values are compared and analyzed by using the computer programme. The spike frequencies according to temperature show the distribution of bell type, with maximal spike frequencies at intermediate temperatures and minimal ones at either end. The most common pattern consist of high spike frequency during failing and low one during rising temperatures.

  • PDF