• 제목/요약/키워드: Chaotic Neural Networks(CNN)

검색결과 6건 처리시간 0.034초

Prefilter 형태의 카오틱 신경망 속도보상기를 이용한 제어기 설계 (Controller Design using PreFilter Type Chaotic Neural Networks Compensator)

  • 최운하;김상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.651-653
    • /
    • 1998
  • This thesis propose the prefilter type control strategies using modified chaotic neural networks #or the trajectory control of robotic manipulator. Since the structure of chaotic neural networks and neurons, chaotic neural networks can show the robust characteristics for controlling highly nonlinear dynamics like robotic manipulators. For its application, the trajectory controller of the three-axis PUMA robot is designed by CNN. The CNN controller acts as the compensator of the PD controller. Simulation results show that learning error decrease drastically via on- line learning and the performance is excellent. The CNN controller have much better controllability and shorter calculation time compared to the RNN controller. Another advantage of the proposed controller could be attached to conventional robot controller without hardware changes.

  • PDF

Prefilter 형태의 카오틱 신경망 속도보상기를 이용한 로봇 제어기 설계 (Prefilter Type Velocity Compensating Robot Controller Design using Modified Chaotic Neural Networks)

  • 홍수동;최운하;김상희
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권4호
    • /
    • pp.184-191
    • /
    • 2001
  • This paper proposes a prefilter type velocity compensating control system using modified chaotic neural networks for the trajectory control of robotic manipulator. Since the structure of modified chaotic neural networks(MCNN) and neurons have highly nonlinear dynamic characteristics, MCNN can show the robust characteristics for controlling highly nonlinear dynamics like robotic manipulators. For its application, the trajectory controller of the three-axis robot manipulator is designed by MCNN. The MCNN controller acts as the compensator of the PD controller. Simulation results show that learning error decrease drastically via on-line learning and the performance is excellent. The MCNN controller showed much better control performance and shorter calculation time compared to the RNN controller, Another advantage of the proposed controller could by attached to conventional robot controller without hardware changes.

  • PDF

수정된 카오스 신경망을 이용한 무제약 서체 숫자 인식 (Recognition of Unconstrained Handwritten Numerals using Modified Chaotic Neural Networks)

  • 최한고;김상희;이상재
    • 융합신호처리학회논문지
    • /
    • 제2권1호
    • /
    • pp.44-52
    • /
    • 2001
  • 본 논문은 수정된 카오틱 신경망(MCNN)을 이용하여 완전 무제약 서체 숫자 인식을 다루고 있다. 카오틱 신경망(CNN)의 동적 특성과 학습과정을 강화함으로써 복잡한 패턴인식 문제를 해결할 수 있는 유용한 신경망으로 수정하였다. MCNN은 신경망 구조와 뉴런 자체가 높은 차수의 비선형 동적특성을 갖고 있으므로 복잡한 서체 숫자를 분류할 수 있는 적합한 신경망이다. 숫자 확인은 원래의 숫자 이미지로부터 특징을 추출하고 MCNN에 근거한 분류기를 이용하여 숫자를 인식한다. MCNN 분류기의 성능은 Canada, Montreal의 Concordia 대학의 숫자 데이터 베이스로 평가하였다. 인식성능의 상대적인 비교를 위해 MCNN 분류기는 리커런트 신경망(RNN) 분류기와 비교하였다. 실험결과에 의하면 인식율은 98.0%이었으며, 이는 MCNN 분류기가 같은 데이터 베이스에 대해 발표되었던 다른 분류기와 RNN 분류기보다 성능이 우수함을 나타낸다.

  • PDF

The Coupling Effects of Excitatory and Inhibitory Connections Between Chaotic Neurons Having Gaussian-shaped Refractory Function With Hysteresis

  • Park, Changkyu;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.356-361
    • /
    • 1998
  • Neural Networks, modeled succinctly from the real nervous system of a living body, can be categorized into two folds; artificial neural network(ANN) and biological neural network(BNN). While the former has been developed to solve practical problems using function approximation capability, pattern classification) clustering algorithm, etc, the latter has been focused on verifying the information processing capability to which brain research gives an impetus, by mimicking real biological systems. However, BNN suffers Iron severe nonlinearities dealt with. A bridge between two neural networks is chaotic neural network(CNN), which simply delineate the real nor-vous system and comprises almost all the ANN structures by selecting parameters. Main research theme of this area is to develop an explanation tool to clarify the information processing mechanism in biological systems and its extension to engineering applications. The CNN has a Gaussian-shaped refractory function with hysteresis effect and the chaotic responses of it have been observed fur a wide range of parameter space. Through the examination of the coupling effects of excitatory and inhibitory connections, the secrets of information processing and memory structure will appear.

  • PDF

카오틱 신경망을 이용한 서체 숫자 인식 (Recognition of Unconstrained Handwritten Numerals using Chaotic Neural Network)

  • 조재홍;성정원
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.1301-1304
    • /
    • 1998
  • Several neural networks have been successfully used to classify complex patterns such as handwritten numerals or words. This paper describes the discrimination of totally unconstrained handwritten numerals using the proposed chaotic neural network (CNN) to improve the recognition rate. The recognition system in the paper consists of the preprocessing stage to extract features using Kirsch mask and the classification stage to recognize numerals using the CNN. In order to evaluate the performance of the proposed network, we performed the recognition with unconstrained handwritten numeral database of Concordia university, Canada. Experimental results show that the CNN based recognizer performs higher recognition rate than other neural network-based methods reported using same database.

  • PDF

카오스 신경망을 이용한 기계적 서보 시스템의 경로 제어 (Contour Conrtol of Mechatronic Servo Systems Using Chaotic Neural Networks)

  • 최원영;김상희;최한고;채창현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.400-402
    • /
    • 1997
  • This paper investigates the direct and adaptive control of mechatronic servo systems using modified chaotic neural networks (CNNs). For the performance evaluation of the proposed neural networks, we simulate the trajectory control of the X-Y table with direct control strategies. The CNN based controller demonstrates accurate tracking of the planned path and also shows superior performance on convergence and final error comparing with recurrent neural network(RNN) controller.

  • PDF