• Title/Summary/Keyword: Chaos System

Search Result 342, Processing Time 0.023 seconds

Generalized Hardware Post-processing Technique for Chaos-Based Pseudorandom Number Generators

  • Barakat, Mohamed L.;Mansingka, Abhinav S.;Radwan, Ahmed G.;Salama, Khaled N.
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.448-458
    • /
    • 2013
  • This paper presents a generalized post-processing technique for enhancing the pseudorandomness of digital chaotic oscillators through a nonlinear XOR-based operation with rotation and feedback. The technique allows full utilization of the chaotic output as pseudorandom number generators and improves throughput without a significant area penalty. Digital design of a third-order chaotic system with maximum function nonlinearity is presented with verified chaotic dynamics. The proposed post-processing technique eliminates statistical degradation in all output bits, thus maximizing throughput compared to other processing techniques. Furthermore, the technique is applied to several fully digital chaotic oscillators with performance surpassing previously reported systems in the literature. The enhancement in the randomness is further examined in a simple image encryption application resulting in a better security performance. The system is verified through experiment on a Xilinx Virtex 4 FPGA with throughput up to 15.44 Gbit/s and logic utilization less than 0.84% for 32-bit implementations.

CONTROL OF LASER WELD KEYHOLE DYNAMICS BY POWER MODULATION

  • Cho, Min-Hyun;Dave Farson
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.600-605
    • /
    • 2002
  • The keyhole formed by high energy density laser-material interaction periodically collapses due to surface tension of the molten metal in partial penetration welds. The collapse sometimes traps a void at the bottom of the keyhole, and it remains as welding defects. This phenomenon is seen as one cause of the instability of the keyhole during laser beam welding. Thus, it seems likely that improving the stability of the keyhole can reduce voids and uniform the penetration depth. The goal of this work is to develop techniques for controlling laser weld keyhole dynamics to reduce weld defects such as voids and inconsistent penetration. Statistical analysis of the penetration depth signals in glycerin determined that keyhole dynamics are chaotic. The chaotic nature of keyhole fluctuations and the ability of laser power modulation to control them have been demonstrated by high-speed video images of laser welds in glycerin. Additionally, an incident leading beam angle is applied to enhance the stability of the keyhole. The quasi-sinusoidal laser beam power of 400Hz frequency and 15$^{\circ}$ incident leading beam angle were determined to be the optimum parameters for the reduction of voids. Finally, chaos analyses of uncontrolled signals and controlled signals were done to show the effectiveness of modulation on the keyhole dynamics. Three-dimensional phase plots for uncontrolled system and controlled system are produced to demonstrate that the chaotic keyhole dynamics is converted to regular periodic behavior by control methods: power modulation and incident leading beam angle.

  • PDF

Chaos system using PPM-DCSK modulation (PPM-DCSK 변조를 이용한 카오스 시스템)

  • Kim, Sung-Gon;Jang, Eun-Young
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.814-820
    • /
    • 2020
  • In the M-ary DCSK system up to now, as M increases, the distance between constellation signal points becomes closer and performance deteriorates. we propose a hybrid modulation scheme based on PPM and DCSK to improve the BER performance. one part of the bit is modulated by the PPM and the other part by DCSK. Thus, the information bearing signal is modulated simultaneously according to the selected pulse position of the PPM determined by the information bit and the additional information bit. The analytical BER performance of the proposed plan is derived and verified by simulation. The results show that the proposed scheme outperforms conventional M-DCSK, code index modulation DCSK and rectified code index DCSK in additional white Gaussian noise and multipath Rayleigh fading channels.

Experimental Study on Conducted EMI Mitigation in SMPS using a Novel Spread Spectrum Technique

  • Premalatha, L.;Raghavendiran, T.A.;Ravichandran, C.
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.619-625
    • /
    • 2013
  • Switched mode power supplies (SMPS) are power electronic circuits extensively used in a wide range of applications. High frequency switching operation of SMPS causes electromagnetic emissions and has the potential to interfere with system operation, which in turn has an impact on system performance. This makes electromagnetic compatibility (EMC) an important concern. In this paper, a new and simple spread spectrum technique is proposed by modulating chaotic pulse position modulation (CPPM) and pulse width modulation (PWM). The resulting CPWM is implemented to reduce the conducted EMI in SMPS. The proposed method is found to be effective in reducing conduction EMI. The effectiveness and simplicity of the proposed method on spreading those dominating frequencies is compared to the EMI mitigation technique using an external chaotic generator. Finally, the levels of conductive EMI with standard PWM, CPWM with an external chaos generator and the proposed method are experimentally verified to comply with the CISPR 22A regulations. The results confirm the effectiveness of the proposed method.

An IC Chip of a Cell-Network Type Circuit Constructed with 1-Dimensional Chaos Circuits

  • Eguchi, Kei;Ueno, Fumio;Zhu, Hongbing;Tobata, Toru;Ootani, Yuri
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2000-2003
    • /
    • 2002
  • In this paper, an IC chip of a cell- network type circuit constructed with 1-dimensional chaos circuits is reported. The circuit, is designed by sing switched-current (Sl) techniques. In the proposed circuit, by controlling connections of cells, an S- dimensional circuit (S = 1, 2, 3,…) and a synchronization system can be constructed easily. Furthermore, in spite of faults of a few cells, the circuit can reconstruct above-mentioned systems only to change connections of cells. This feature will open up new vista for engineering applications which are used in a distance place such as space, deep sea, etc. since it is difficult to repair faults of these application systems. To investigate the characteristics of the circuit, SPICE simulations are performed. The VLSI chip is fabricated from the layout design using a CAD tool, MAGIC. The proposed circuit is integrable by a standard 1.2 $\mu\textrm{m}$ CMOS technology.

  • PDF

Metamodeling of nonlinear structural systems with parametric uncertainty subject to stochastic dynamic excitation

  • Spiridonakos, Minas D.;Chatzia, Eleni N.
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.915-934
    • /
    • 2015
  • Within the context of Structural Health Monitoring (SHM), it is often the case that structural systems are described by uncertainty, both with respect to their parameters and the characteristics of the input loads. For the purposes of system identification, efficient modeling procedures are of the essence for a fast and reliable computation of structural response while taking these uncertainties into account. In this work, a reduced order metamodeling framework is introduced for the challenging case of nonlinear structural systems subjected to earthquake excitation. The introduced metamodeling method is based on Nonlinear AutoRegressive models with eXogenous input (NARX), able to describe nonlinear dynamics, which are moreover characterized by random parameters utilized for the description of the uncertainty propagation. These random parameters, which include characteristics of the input excitation, are expanded onto a suitably defined finite-dimensional Polynomial Chaos (PC) basis and thus the resulting representation is fully described through a small number of deterministic coefficients of projection. The effectiveness of the proposed PC-NARX method is illustrated through its implementation on the metamodeling of a five-storey shear frame model paradigm for response in the region of plasticity, i.e., outside the commonly addressed linear elastic region. The added contribution of the introduced scheme is the ability of the proposed methodology to incorporate uncertainty into the simulation. The results demonstrate the efficiency of the proposed methodology for accurate prediction and simulation of the numerical model dynamics with a vast reduction of the required computational toll.

Performance of Optimization for Short Reference Differential Chaos Shift Keying Scheme (짧은 참조신호를 이용한 차동 카오스 편이 변조의 성능 최적화)

  • Jang, Eun-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.453-460
    • /
    • 2019
  • The SR-DCSK(Short Reference Differential Chaos Shift Keying) is a variant of DCSK that improves data transmission speed and energy efficiency without additional complexity. However, even when the reference signal of the optimum length is applied, the BER performance of the SR-DCSK is not better than that of the conventional DCSK. In this paper, we propose a scheme to improve the performance of SR-DCSK by applying two scale factors (scale coefficients) to the reference signal and the information signal, respectively. And the performance of the proposed method is analyzed by BER using Gaussian Approximation. Based on the derived BER expressions, we minimize the BER for a given system parameter to optimize the ratio of the two coefficients. Simulation results confirm that the BER of the proposed method is much improved over the SR-DCSK when we apply the optimal ratio of the two scale factors.

Sealing design optimization of nuclear pressure relief valves based on the polynomial chaos expansion surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Tianhang Xue;Xueguan Song;Xiaofeng Li;Dianjing Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1382-1399
    • /
    • 2023
  • Pressure relief valve (PRV) is one of the important control valves used in nuclear power plants, and its sealing performance is crucial to ensure the safety and function of the entire pressure system. For the sealing performance improving purpose, an explicit function that accounts for all design parameters and can accurately describe the relationship between the multi-design parameters and the seal performance is essential, which is also the challenge of the valve seal design and/or optimization work. On this basis, a surrogate model-based design optimization is carried out in this paper. To obtain the basic data required by the surrogate model, both the Finite Element Model (FEM) and the Computational Fluid Dynamics (CFD) based numerical models were successively established, and thereby both the contact stresses of valve static sealing and dynamic impact (between valve disk and nozzle) could be predicted. With these basic data, the polynomial chaos expansion (PCE) surrogate model which can not only be used for inputs-outputs relationship construction, but also produce the sensitivity of different design parameters were developed. Based on the PCE surrogate model, a new design scheme was obtained after optimization, in which the valve sealing stress is increased by 24.42% while keeping the maximum impact stress lower than 90% of the material allowable stress. The result confirms the ability and feasibility of the method proposed in this paper, and should also be suitable for performance design optimizations of control valves with similar structures.

Bifurcation Analysis of Nonlinear Oscillations of Suspended Cables with 2-to-1 Internal Resonance (2:1 내부공진을 갖는 케이블의 비선형 진동의 분기해석)

  • 장서일
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1144-1149
    • /
    • 1998
  • A two degree-of-freedom model of suspended cables is studied for forced resonant response. The method of averaging is used to obtain first-order approximations to the response of the system. A bifurcation analysis of the averaged system is performed in the case of 2-to-1 internal resonance. Nonlinear coupled-mode motions are found to bifurcate from single-mode responses and further bifurcate to limit cycle motions via Hopf bifurcations. The limit cycle solutions undergo period doubling bifurcations to chaos.

  • PDF

Chaos in nonlinear control systems

  • Lee, Joon-Suh;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.758-762
    • /
    • 1994
  • Complicated dynamical behavior can occur in model reference adaptive control systems when two external sinusoidal signals are introduced although the plant and reference model are stable linear first older systems. The phase portrait plot and the power spectral analysis indicate chaotic behavior. In the system treated, a positive Lyapuniov exponent and non-integer dimension clearly manifest chaotic nature of the system.

  • PDF