• Title/Summary/Keyword: Channel thickness

Search Result 556, Processing Time 0.031 seconds

Water pressure Test and analysis for Welding Thickness Decision of New Cold-formed Type Concrete Filled Tubular Square Column (조립각형 CFT 기둥의 용접크기 결정을 위한 수압실험 및 해석)

  • Lee, Seong-Hui;Kim, Sun Hee;Kim, Young Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.515-526
    • /
    • 2009
  • There are three main production processes in the manufacture of concrete-filled square steel columns. The first process is known as the 'box-type process' or 'four-seam method,' wherein four beams are welded together at the seams. The second is the 'cold-forming process' or 'two-seam method,' wherein the seams of two channel beams are welded together. The third is the 'pressing process' or 'one-seam method,' wherein a circular column is pressed until it becomes a square column. In calculating the production cost for the making of a steel tube, it is very important to consider the welding process to be used and the desiredthickness of the steel tube, such as a square column that was developed under a new method, formed through the four-seam flare welding method at the center of the steel column width, following the L-shape formation. Certain tests were suggested in this study to evaluate the welding amount of concrete-filled square steel columns. With the parameters of the production method of a square steel column, the thickness of the steel square columns, and the welding amount, six specimens were produced. A structural test and finite-element analysis were conducted to assess the behavior of the steel column according to the water pressure inside the steel columns.

A Study on the Load Carrying Capacity and Deformation Capacity of the Internal Anchors Welded Cold Formed Concrete Filled Columns (내부앵커형 콘크리트 충전 기둥의 내력 및 변형능력에 관한 연구)

  • Kim, Sun Hee;Yom, Kong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.347-357
    • /
    • 2013
  • Recently, In recognition of outstanding structural performance the use of Concrete Filled steel Tube(CFT) columns has been increased. Research is ongoing that effective use of cross-sectional because steel strength development and rising prices. In this Lab, suggests new shape by Thin steel plates bent to be L-channel welded to form square steel tube to maximize efficiency of the cross section. In addition, since the rib placed at the center of the tube width acts as an anchor; higher load capacity of buckling is acceptable. we have developed New shape welded built-up square tube for broader usability which were bent to be L-shaped and thin Plate each unit member were welded. In order to apply the new shape built-up square columns, we predicted structure behavior, stress distribution with parameter Width thickness ratio. The experimental results presented in standards and even exceed the b/t of the rib anchors installed in the role due to exert enough strength and deformation to improve performance was favorable.

Tunable Magnetism by Magnetic Phase in $Fe_3O_4$/ZnO Multilayer

  • Yun, Jong-Gu;Park, Chang-Yeop;Yun, Sun-Gil
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.21.2-21.2
    • /
    • 2011
  • $Fe_3O_4$ having half metallic property is one of the efficient spin filtering materials which are widely used in spintronic research field and ZnO is wide band gap semiconductor which can be used by tunnel barrier or semiconductor channel in spin MOSFET. We investigated the magnetic and the electric properties of $Fe_3O_4$/ZnO multilayer fabricated on c-$Al_2O_3$ substrate by pulsed laser deposition (PLD). For multilayer films, PLD was performed at variable temperatures such as $200{\sim}750^{\circ}C$ and at target distance from 40 to 80 mm, KrF eximer laser of 1.5 $J/cm^2$ and a reputation rate of 2Hz. $Fe_3O_4$/ZnO multilayers were deposited at $4{\times}10^{-6}$ Torr. After fabricating $Fe_3O_4$/ZnO multilayers, $Fe_3O_4$/ZnO multilayers were treated by RTA(Rapid Thermal Annealing) at various temperature to change magnetic phase. The magnetism of the multilayer is changed by thickness of the ZnO tunnel barrier. Magnetic phase of FexOy showed a very small magnetism due to $Fe_2O_3$ ${\alpha}$-phase, but large magnetism from $Fe_3O_4$ or $Fe_2O_3$ ${\gamma}$-phase was observed. In the present study, effect of the ZnO thickness on the MR (magnetoresistance) ratio was investigated in detail.

  • PDF

Studies on the Ability to Detect Lesions According to the Changes in the MR Diffusion Weighted Images

  • Kim, Chang-Bok;Cho, Jae-Hwan;Dong, Kyung-Rae;Chung, Woon-Kwan
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.153-157
    • /
    • 2012
  • This study evaluated the ability of Diffusion-Weight Image (DWI), which is one of pulse sequences used in MRI based on the T2 weighted images, to detect samples placed within phantoms according to their size. Two identically sized phantoms, which could be inserted into the breast coil bilaterally, were prepared. Five samples with different sizes were placed in the phantoms, and the T2 weighted images and DWI were obtained. The Breast 2 channel coil of SIEMENS MAGNETOM Avanto 1.5 Tesla equipment was used for the experiments. 2D T2 weighted images were obtained using the following parameters: TR/TE = 6700/74 msec, Thickness/gap = 5/1 mm, Inversion Time (TI) = 130 ms, and matrix = $224{\times}448$. The parameters of DWI were that TR/TE = 8100/90 msec, Thickness/gap = 5/1 mm, matrix = $128{\times}128$, Inversion Time = 185 ms, and b-value = 0, 100, 300, 600, 1000 s/mm. The ratio of the sample volume on DWI compared to the T2 weighted images, which show excellent ability to detect lesions on MR images, was presented as the mean b-value. The measured b-value of the samples was obtained: 0.5${\times}$0.5 cm=0.33/0.34 square ${\times}$ cm (103%), 1${\times}$1 cm=1.28/1.25 square ${\times}$ cm (102.4%), 1.5${\times}$1.5 cm = 2.28/2.67 square ${\times}$ cm (85.39%), 2${\times}$2 cm=3.56/4.08 square ${\times}$ cm (87.25%), and 2.5${\times}$2.5 cm=7.53/8.77 square ${\times}$ cm (85.86%). In conclusion, the detection ability by the size of a sample was measured to be over 85% compared to T2 weighted image, but the detection ability of DWI was relatively lower than that of T2 weighted image.

Surface Imaging of Barley Aleurone Cell by Atomic Force Microscopy

  • Kim, Tae-Wan;Huh, Kwang-Woon;Kim, Seung-Hwan;Ku, Hyun-Hwoi;Lee, Byung-Moo;Kim, Jae-Yoon;Seo, Yong-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.36-40
    • /
    • 2004
  • To observe and analysis ultra-microscopically barley aleurone cell surface, atomic force microscope (AFM) was used. Seed coat of early maturing germplasm, eam9, was dehulled and scanned by non-contact mode. We have obtained the high resolution topographic 3-dimensional image of barley aleurone layer with high resolution. These images showed the membrane proteins in barley aleurone cell. One channel protein and numerous peripheral or integral proteins were detected in a area of 100 $\mu\textrm{m}^2$. Furthermore, we found that their widths were ranged from 50 to 750nm and lengths from 0 to 66 $\mu\textrm{m}$. The thickness of aleurone layer was measured by scanning electron microscope. The thickness at early developmental stage was about 16 and then the aleurone cell enlarged upto 57 $\mu\textrm{m}$${\mu}{\textrm}{m}$ at least until 42 days after anthesis. In this study, we firstly reported on the ultrastructural AFM analysis of living aleurone cell as a biological specimen. It was clearly suggested that AFM will become an powerful tool for probing both the structural properties of biological samples.

Usefulness of the High B-value DWI in Brain Tumors (뇌종양 확산강조영상에서 High B-value의 유용성 평가)

  • Kim, Jin-tae;Byun, Jae-Hu;Park, Yong-Seong;Lee, Rae-Gon;Hwang, Seon-Kwang
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.17 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • This study attempts to examine the clinical usefulness of High b-value DWI (diffusion weighted imaging) for brain tumors with an edema. Subjects were seven patients selected from 65 patients who received an MRI scan for suspected encephalopathy and confirmed diagnosis at our hospital from February to July 2015 (male: 7, average age : 66 years old). As test equipment, 3.0T MR System (ACHIEVA Release, Philips, Best, The Netherlands) and 8Channel SENSE Head Coill were used. DWI checks on the use of the variable TR 5460ms, TE 132ms, Slice Thickness 4mm, gap 1mm, Slice number 29 is, 3D T1WI is TR 8.4ms, TE 3.9ms, matrix size $240{\times}240$, Slice can set 180 piecesIt was. b value of 0, 1,000, 2,000 s/mm2 with DWI acquisition and 3D T1WI enhancement five minutes after the Slice Thickness 3mm, gap 0mm to reconstruct the upper face axis (MPR TRA CE) was. As for the experiment, in b-value 1,000 and 2,000 images, SNR and the lesion at the lesion site and CNR in the normal site opposite to the lesion are measured. WW(window width) and WL(window level) are made equal in MRICro software, and the volume of the lesion is measured from each of b-value and MPR TRA CE image. Using SPSS ver. 1.8.0.0 Mann Whitney-test was analyzed for SNR and CNR, while Kruskal-Wallis test was analyzed for volume.

  • PDF

A REVIEW OF CANDU FEEDER WALL THINNING

  • Chung, Han-Sub
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.568-575
    • /
    • 2010
  • Flow Accelerated Corrosion is an active degradation mechanism of CANDU feeder. The tight bend downstream to Gray loc weld connection, close to reactor face, suffers significant wall thinning by FAC. Extensive in-service inspection of feeder wall thinning is very difficult because of the intense radiation field, complex geometry, and space restrictions. Development of a knowledge-based inspection program is important in order to guarantee that adequate wall thickness is maintained throughout the whole life of feeder. Research results and plant experiences are reviewed, and the plant inspection databases from Wolsong Units One to Four are analyzed in order to support developing such a knowledge-based inspection program. The initial thickness before wall thinning is highly non-uniform because of bending during manufacturing stage, and the thinning rate is non-uniform because of the mass transfer coefficient distributed non-uniformly depending on local hydraulics. It is obvious that the knowledge-based feeder inspection program should focus on both fastest thinning locations and thinnest locations. The feeder wall thinning rate is found to be correlated proportionately with QV of each channel. A statistical model is proposed to assess the remaining life of each feeder using the QV correlation and the measured thicknesses. W-1 feeder suffered significant thinning so that the shortest remaining life barely exceeded one year at the end of operation before replacement. W-2 feeder showed far slower thinning than W-1 feeder despite the faster coolant flow. It is believed that slower thinning in W-2 is because of higher chromium content in the carbon steel feeder material. The average Cr content of W-2 feeder is 0.051%, while that value is 0.02% for W-1 feeder. It is to be noted that FAC is reduced substantially even though the Cr content of W-2 feeder is still very low.

The Formative Processes and Ages of Paleo-coastal Sediments in Dangjeong-ri, Seocheon-gun in the Western Coast, South Korea: Evaluation of the Mode and Strain Rate of the Late Quaternary Tectonism (III) (서해안 서천군 당정리 일대에 분포하는 육상 고해안 퇴적물의 형성 과정과 형성 시기: 한반도 제4기 후기 지각운동의 양식과 변형률 산출을 위한 연구(III))

  • Shin, Jae-Ryul;Hong, Yeong-Min;Hong, Seongchan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.33-45
    • /
    • 2020
  • A number of unconsolidated deposits, consisting of a layer of gravels and silt, are found in Dangjeong-ri, Seocheon-gun in the western coast. From below in the stratigraphic sequence, the gravel layer ranging up to a maximum thickness of about 2 meters is interpreted as being formed by fluvial processes of an old channel (Dangjeong S.), and the overlying silt or sandy silt layer of 2 to 3 thickness meters is assumed to be emerged paleo-tidal sediments which was deposited in low tidal-energy environments. As the results of rock surface IRSL datings, the depositional ages of gravels are confirmed as ca. 78,000 ~ 83,000 years BP, indicating that the layer was formed in response to a high-stand sea level of MIS 5a along the Dangjeongcheon estuary. It is presumed that the relative height of 4.5 meter between the altitude of the stream bed (9.5 m) and the altitude of the bedrock boundary in the gravel layer (14 m) indicates the uplift amount since deposition. Paleo-sedimentary environments and an altitude of paleo-shoreline in the study area will be discussed with additional age dating focused on the silt layer.

저온 공정 온도에서 $Al_2O_3$ 게이트 절연물질을 사용한 InGaZnO thin film transistors

  • 우창호;안철현;김영이;조형균
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.11-11
    • /
    • 2010
  • Thin-film-transistors (TFTs) that can be deposited at low temperature have recently attracted lots of applications such as sensors, solar cell and displays, because of the great flexible electronics and transparent. Transparent and flexible transistors are being required that high mobility and large-area uniformity at low temperature [1]. But, unfortunately most of TFT structures are used to be $SiO_2$ as gate dielectric layer. The $SiO_2$ has disadvantaged that it is required to high driving voltage to achieve the same operating efficiency compared with other high-k materials and its thickness is thicker than high-k materials [2]. To solve this problem, we find lots of high-k materials as $HfO_2$, $ZrO_2$, $SiN_x$, $TiO_2$, $Al_2O_3$. Among the High-k materials, $Al_2O_3$ is one of the outstanding materials due to its properties are high dielectric constant ( ~9 ), relatively low leakage current, wide bandgap ( 8.7 eV ) and good device stability. For the realization of flexible displays, all processes should be performed at very low temperatures, but low temperature $Al_2O_3$ grown by sputtering showed deteriorated electrical performance. Further decrease in growth temperature induces a high density of charge traps in the gate oxide/channel. This study investigated the effect of growth temperatures of ALD grown $Al_2O_3$ layers on the TFT device performance. The ALD deposition showed high conformal and defect-free dielectric layers at low temperature compared with other deposition equipments [2]. After ITO was wet-chemically etched with HCl : $HNO_3$ = 3:1, $Al_2O_3$ layer was deposited by ALD at various growth temperatures or lift-off process. Amorphous InGaZnO channel layers were deposited by rf magnetron sputtering at a working pressure of 3 mTorr and $O_2$/Ar (1/29 sccm). The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. The TFT devices were heat-treated in a furnace at $300^{\circ}C$ and nitrogen atmosphere for 1 hour by rapid thermal treatment. The electrical properties of the oxide TFTs were measured using semiconductor parameter analyzer (4145B), and LCR meter.

  • PDF

Position Control of Micro Particles in a Fluid Flow Using Ultrasonic Standing Wave (정재초음파를 이용한 유동중 미세 입자 위치 제어)

  • Cho, Seung-Hyun;Seo, Dae-Cheol;Ahn, Bong-Young;Kim, Ki-Bok;Kim, Yong-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • Using ultrasonic standing waves, micro particles submerged or flowing in fluid can be manipulated. Due to acoustic radiation force of ultrasound, particles are forced to move to pressure nodal or antinodal lines. In this work, we propose a method to control the position of micro particle in a flow by adjusting the frequency of the standing wave. To this end, standing wave field generation system including a few millimeter thick micro channel was established using an immersible ultrasonic transducer. The present generation system works valid in a frequency range between 2.0 MHz and 2.5 MHz. We observed the SiC particles in water moved to pressure nodal lines by the standing wave. The effect of the channel thickness and operating frequency was also investigated. Interestingly, it was shown that the operating frequency have a close relation with the location of the pressure nodal line. Consequently, it fan be said that the position of particle movement rail be controlled by adjusting the ultrasound frequency. The maximum range of the controllable position was about 261 micrometers under the given condition. The resulted observations reveal the possibility of various applications of the ultrasonic standing wave to the manipulation of particles submerged in a fluid.