• Title/Summary/Keyword: Channel state information

Search Result 744, Processing Time 0.029 seconds

Tensor-Based Channel Estimation Approach for One-Way Multi-Hop Relaying Communications

  • Li, Shuangzhi;Mu, Xiaomin;Guo, Xin;Yang, Jing;Zhang, Jiankang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4967-4986
    • /
    • 2015
  • Multi-hop relaying communications have great potentials in improving transmission performance by deploying relay nodes. The benefit is critically dependent on the accuracy of the channel state information (CSI) of all the transmitting links. However, the CSI has to be estimated. In this paper, we investigate the channel estimation problem in one-way multi-hop MIMO amplify-and-forward (AF) relay system, where both the two-hop and three-hop communication link exist. Traditional point-to-point MIMO channel estimation methods will result in error propagation in estimating relay links, and separately tackling the channel estimation issue of each link will lose the gain as part of channel matrices involved in multiple communication links. In order to exploit all the available gains, we develop a novel channel estimation model by structuring different communication links using the PARAFAC and PARATUCK2 tensor analysis. Furthermore, a two-stage fitting algorithm is derived to estimate all the channel matrices involved in the communication process. In particular, essential uniqueness is further discussed. Simulation results demonstrate the advantage and effectiveness of the proposed channel estimator.

Density Evolution Analysis of RS-A-SISO Algorithms for Serially Concatenated CPM over Fading Channels (페이딩 채널에서 직렬 결합 CPM (SCCPM)에 대한 RS-A-SISO 알고리즘과 확률 밀도 진화 분석)

  • Chung, Kyu-Hyuk;Heo, Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.27-34
    • /
    • 2005
  • Iterative detection (ID) has proven to be a near-optimal solution for concatenated Finite State Machines (FSMs) with interleavers over an additive white Gaussian noise (AWGN) channel. When perfect channel state information (CSI) is not available at the receiver, an adaptive ID (AID) scheme is required to deal with the unknown, and possibly time-varying parameters. The basic building block for ID or AID is the soft-input soft-output (SISO) or adaptive SISO (A-SISO) module. In this paper, Reduced State SISO (RS-SISO) algorithms have been applied for complexity reduction of the A-SISO module. We show that serially concatenated CPM (SCCPM) with AID has turbo-like performance over fading ISI channels and also RS-A-SISO systems have large iteration gains. Various design options for RS-A-SISO algorithms are evaluated. Recently developed density evolution technique is used to analyze RS-A-SISO algorithms. We show that density evolution technique that is usually used for AWGN systems is also a good analysis tool for RS-A-SISO systems over frequency-selective fading channels.

Achievable Rate of Beamforming Dual-hop Multi-antenna Relay Network in the Presence of a Jammer

  • Feng, Guiguo;Guo, Wangmei;Gao, Jingliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3789-3808
    • /
    • 2017
  • This paper studies a multi-antenna wireless relay network in the presence of a jammer. In this network, the source node transmits signals to the destination node through a multi-antenna relay node which adopts the amplify-and-forward scheme, and the jammer attempts to inject additive signals on all antennas of the relay node. With the linear beamforming scheme at the relay node, this network can be modeled as an equivalent Gaussian arbitrarily varying channel (GAVC). Based on this observation, we deduce the mathematical closed-forms of the capacities for two special cases and the suboptimal achievable rate for the general case, respectively. To reduce complexity, we further propose an optimal structure of the beamforming matrix. In addition, we present a second order cone programming (SOCP)-based algorithm to efficiently compute the optimal beamforming matrix so as to maximize the transmission rate between the source and the destination when the perfect channel state information (CSI) is available. Our numerical simulations show significant improvements of our propose scheme over other baseline ones.

A Beamformer Construction Method Via Partial Feedback of Channel State Information of MIMO Systems (다중 입출력 시스템의 부분적 채널 정보 궤환을 통한 빔포머 형성 방안)

  • Kim, Yoonsoo;Sung, Wonjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.26-33
    • /
    • 2014
  • For wireless communication systems of (and beyond) LTE-Advanced, multiple-input multiple-output (MIMO) with an increased number of antennas will be utilized for system throughput improvement. When using such an increased number of antenna, an excessive amount of overhead in channel state information (CSI) feedback can be a serious problem. In this paper, we propose methods which reduce the CSI feedback overhead, particularly including application strategies for multi-rank transmission targeted for two or more reception antennas. To reduce the information which is instantaneously transmitted from the reception node to the transmission node, we present a beamforming method utilizing singular value decomposition (SVD) based on channel estimation of partitioned antenna arrays. Since the SVDs for partial matrices of the channel may lose the characteristics of the original unpartitioned matrix, we explain an appropriate scheme to cope with this problem.

Adaptive Combined Scalable Video Coding over MIMO-OFDM Systems using Partial Channel State Information

  • Rantelobo, Kalvein;Wirawan, Wirawan;Hendrantoro, Gamantyo;Affandi, Achmad;Zhao, Hua-An
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3200-3219
    • /
    • 2013
  • This paper proposes an adaptive combined scalable video coding (CSVC) system for video transmission over MIMO-OFDM (Multiple-Input Multiple-Output-Orthogonal Frequency Division Multiplexing) broadband wireless communication systems. The scalable combination method of CSVC adaptively combines the medium grain scalable (MGS), the coarse grain scalable (CGS) and the scalable spatial modes with the limited feedback partially from channel state information (CSI) of MIMO-OFDM systems. The objective is to improve the average of peak signal-to-noise ratio (PSNR) and bit error rate (BER) of the received video stream by exploiting partial CSI of video sources and channel condition. Experimental results show that the delivered quality using the proposed adaptive CSVC over MIMO-OFDM system performs better than those proposed previously in the literature.

Fast Channel Allocation for Ultra-dense D2D-enabled Cellular Network with Interference Constraint in Underlaying Mode

  • Dun, Hui;Ye, Fang;Jiao, Shuhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2240-2254
    • /
    • 2021
  • We investigate the channel allocation problem in an ultra-dense device-to-device (D2D) enabled cellular network in underlaying mode where multiple D2D users are forced to share the same channel. Two kinds of low complexity solutions, which just require partial channel state information (CSI) exchange, are devised to resolve the combinatorial optimization problem with the quality of service (QoS) guaranteeing. We begin by sorting the cellular users equipment (CUEs) links in sequence in a matric of interference tolerance for ensuring the SINR requirement. Moreover, the interference quota of CUEs is regarded as one kind of communication resource. Multiple D2D candidates compete for the interference quota to establish spectrum sharing links. Then base station calculates the occupation of interference quota by D2D users with partial CSI such as the interference channel gain of D2D users and the channel gain of D2D themselves, and carries out the channel allocation by setting different access priorities distribution. In this paper, we proposed two novel fast matching algorithms utilize partial information rather than global CSI exchanging, which reduce the computation complexity. Numerical results reveal that, our proposed algorithms achieve outstanding performance than the contrast algorithms including Hungarian algorithm in terms of throughput, fairness and access rate. Specifically, the performance of our proposed channel allocation algorithm is more superior in ultra-dense D2D scenarios.

Effects of Channel Aging in Massive MIMO Systems

  • Truong, Kien T.;Heath, Robert W. Jr.
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.338-351
    • /
    • 2013
  • Multiple-input multiple-output (MIMO) communication may provide high spectral efficiency through the deployment of a very large number of antenna elements at the base stations. The gains from massive MIMO communication come from the use of multi-user MIMO on the uplink and downlink, but with a large excess of antennas at the base station compared to the number of served users. Initial work on massive MIMO did not fully address several practical issues associated with its deployment. This paper considers the impact of channel aging on the performance of massive MIMO systems. The effects of channel variation are characterized as a function of different system parameters assuming a simple model for the channel time variations at the transmitter. Channel prediction is proposed to overcome channel aging effects. The analytical results on aging show how capacity is lost due to time variation in the channel. Numerical results in a multicell network show that massive MIMO works even with some channel variation and that channel prediction could partially overcome channel aging effects.

Performance Analysis of Channel Error Probability using Markov Model for SCTP Protocol

  • Shinn, Byung-Cheol;Feng, Bai;Khongorzul, Dashdondov
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.134-139
    • /
    • 2008
  • In this paper, we propose an analysis model for the performance of channel error probability in Stream Control Transmission Protocol (SCTP) using Markov model. In this model it is assumed that the compressor and decompressor work in Unidirectional Mode. And the average throughput of SCTP protocol is obtained by finding the throughputs of when the initial channel state is good or bad.

Throughput of Coded DS CDMA/Unslotted ALOHA Networks with Variable Length Data Traffic and Two User Classes in Rayleigh Fading FSMC Model

  • Tseng, Shu-Ming;Chiang, Li-Hsin;Wang, Yung-Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4324-4342
    • /
    • 2014
  • Previous papers analyzed the throughput performance of the CDMA ALOHA system in Rayleigh fading channel, but they assume that the channel coefficient of Rayleigh fading was the same in the whole packet, which is not realistic. We recently proposed the finite-state Markov channel (FSMC) model to the throughput analysis of DS uncoded CDMA/unslotted ALOHA networks for fixed length data traffic in the mobile environment. We now propose the FSMC model to the throughput analysis of coded DS CDMA/unslotted ALOHA networks with variable length data traffic and one or two user classes in the mobile environment. The proposed DS CDMA/unslotted ALOHA wireless networks for two user classes with access control can maintain maximum throughput for the high priority user class under high message arrival per packet duration.

Low Complexity Multiuser Scheduling in Time-Varying MIMO Broadcast Channels

  • Lee, Seung-Hwan;Lee, Jun-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.71-75
    • /
    • 2011
  • The sum-rate maximization rule can find an optimal user set that maximizes the sum capacity in multiple input multiple output (MIMO) broadcast channels (BCs), but the search space for finding the optimal user set becomes prohibitively large as the number of users increases. The proposed algorithm selects a user set of the largest effective channel norms based on statistical channel state information (CSI) for reducing the computational complexity, and uses Tomlinson-Harashima precoding (THP) for minimizing the interference between selected users in time-varying MIMO BCs.