• Title/Summary/Keyword: Channel network

Search Result 2,561, Processing Time 0.027 seconds

Spectrum Sensing in a Cognitive Body Area Network: Detection of a Bonded Channel in the MICS Band

  • Ahn, Chun-Su;Choi, Jae-Hoon;Kim, Sun-Woo
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.32-36
    • /
    • 2012
  • In this paper, we present a novel algorithm for detecting a bonded channel in a cognitive radio network where channel bonding is allowed for a higher data rate. The envelope detection algorithm is proposed to distinguish the center frequency of the received signal in order to determine whether the signal is transmitted by a primary user occupying a single channel or a secondary user occupying more than two channels when the channel is in use.

Effect of First and Second Order Channel Statistics on Queueing Performance (채널의 1차 2차 통계적 특성이 큐의 성능에 미치는 영향)

  • Kim, Young-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.288-291
    • /
    • 2002
  • We characterize multipath fading channel dynamics at the packet level and analyze the corresponding data queueing performance in various environments. We identify the similarity between wire-line queueing analysis and wireless network per-formance analysis. The second order channel statistics, i.e. channel power spectrum, is fecund to play an important role in the modeling of multipath fading channels. However, it is identified that the first order statistics, i.e. channel CDF also has significant impact on queueing performance. We use a special Markov chain, so-called CMPP, throughout this paper.

A systematic method of probing channel characteristics of home power line communication network applied to the Internet accessed control of home appliances (인터넷 가전 제어를 위한 전력선 통신망 채널 특성 추정 기법에 관한 연구)

  • Ahn, N.H.;Chang, T.G.;Kim, H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2559-2561
    • /
    • 2002
  • This paper presents a systematic method of probing channel characteristics and communication reliabilities of home PLC (power line communication) network applied to the Internet accessed control of home appliances. The effects of the three performance deterioating factors, i.e., additive noise, channel attenuation, and intersymbol interference, can be systematically measured by applying the channel probing waveform in the frequency range from 100kHz to 450kHz. The agreement between the derived probability of bit error and the measured probability of bit error supports the validity of the proposed approach of probing home power line channel characteristics. The experimental results performed with the constructed test-bed applying the proposed channel probing method also support the feasibility of commercially deploying the PLC modem installed home appliances and their services for the Internet accessed home automation.

  • PDF

Outage Probability Analysis under Time-varying characteristic of Indoor Single User PLC Considering Channel Length and Transmit Power (채널 길이와 전송 전력을 고려한 시변 환경 옥내 단일 사용자 전력선 통신의 outage 확률 분석)

  • Shin, Jae-Young;Jeong, Ji-Chai
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.285-290
    • /
    • 2010
  • We investigate the outage probability in terms of QoS (quality of service) in indoor PLC network. We consider various kinds of appliances for realistic indoor PLC network. For estimation of the outage probability, we calculate the time-varying channel responses considering the loading conditions based on regular human activities and include the additive noise. We calculate the outage probability for each terminal and investigate relationship between the outage probability and the channel length, and transmit powers. Our results suggest that the outage probability is increased when the channel length becomes longer because more appliances affect the amount of reduced channel capacity and is not improved distinctly for very high and low outage threshold by increasing the transmit power. However, we can see outage probability improvement for 30% outage threshold case by increasing the transmit power.

Simulation of Moving Storm in a Watershed Using A Distributed Model -Model Development- (분포형 모델을 이용한 유역내 이동강우(MOVING STORM)의 유출해석(1) -모델의 개발-)

  • Choe, Gye-Won;Lee, Hui-Seong;An, Sang-Jin
    • Water for future
    • /
    • v.25 no.1
    • /
    • pp.101-110
    • /
    • 1992
  • In this paper for simulating spatially and temporally varied moving storm in a watershed a distributed model was developed. The model is conducted by two major flow simulations which overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation are used in the overland flow simulation. On the other hand, in the channel networks simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction are applied. The finite element formulations were used in the overland flow simulation and the implicit finite difference formulations were used in the channel network simulation. The finite element formulations for the overland flow are analyzed by the Gauss elimination method and the finite difference formulations for the channel network flow are analyzed by the double sweep method having advantages of computational speed and reduced computer storages. Several recurrent coefficient equations for channel network simulation are suggested in the paper.

  • PDF

Enhanced Segmentized Clear Channel Assessment Method for IEEE 802.15.4 Network (IEEE 802.15.4 Network의 전송효율 향상을 위한 Enhanced Semgentized Clear Channel Assessment 기법)

  • Son, Kyou Jung;Chang, Tae Gyu
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.322-325
    • /
    • 2016
  • This paper proposed Enhanced Segmentized Clear Channel Assesment(ESCCA) for the IEEE 802.15.4 networks. This method divides original CCA into two groups to check precise channel status and perform additional CCA to increase throughput performance. Through the proposed method, the device can access the channel more often, so the transmission efficiency of the IEEE 802.15.4 network improves. To confirm the feasibility and usability of the proposed method, computer simulation has been performed. In the simulation, a star topology with one coordinator and a lot of devices is considered and the traffic flows are all one way, with the communication directed to the coordinator. Simulation results_ show the proposed method is improving maximum 10 kbps of throughput and decreasing maximum 15 of the average number of total CCA than IEEE 802.15.4 CCA method.

Dynamic Channel Allocation Using SJF Scheduling in IEEE 802.11p/1609 Vehicular Network (IEEE 802.11p/1609 차량 네트워크에서 SJF(Shortest Job First) 스케쥴링을 이용한 동적 채널 할당 기법)

  • Jang, Hyun-Jun;Kwon, Yong-Ho;Rhee, Byung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.624-627
    • /
    • 2014
  • In vehicular network, the basic goal is to provide vehicle safety service and commercial service such as ITS(Intelligent Transportation System) or video, etc on the road. And most research concentrated on transportation of safety message in congestion situation. It is important to allocate channel for safety message in congestion situation, but providing suitable service is also important problem in vehicular network. For this reason, IEEE 1609.4 allocate 4 multiple service channels (SCHs) for non-safety data transfer. But, in congestion situation with many vehicles, the contention for channel acquisition between services becomes more severe. So services are provided improperly because of lack of service channel. This paper suggests dynamic channel allocation algorithm. The proposed algorithm is that RSU(RaodSide Unit) maintain and manage the information about service and status of channels. On based of the SJF(Shortest Job First) scheduling using those information, RSU selects the most appropriate channel among the 4 SCHs allocated by IEEE 1609.4 in network congestion situation.

  • PDF

Channel Enlargement of PON System Using Nonreciprocal Multiplexing Filter Based on CWDM

  • Kim, Bong-Kyu;Yoon, Bin-Young;Kwon, Yool
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.231-233
    • /
    • 2009
  • We propose a nonreciprocal filter based on coarse wavelength division multiplexing (CWDM) that reduces the upstream channel insertion loss in a passive optical network (PON). We also propose a method to increase the number of channels/optical network units (ONUs) in PON systems using the proposed filter to reduce the service cost per subscriber. Experimental results show that the PON system with the proposed 4-channel filter can reduce the power budget of the upstream and increase the number of ONUs by 3 to 4 times that of a conventional time-division multiplexing PON.

  • PDF

Performance and comparison resource management policies with channel De-Allocation in GPRS Network (GPRS에서 채널 de-allocation 이용시 자원관리 정책 평가 비교)

  • 송윤경;박동선
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.61-64
    • /
    • 2003
  • GPRS is designed for transmitting packet data and supposed to take its radio resource form the pool of channels unused by GSM voice services. In this paper, The GPRS and GSM circuit switched services share the same radio resource. Whenever a channel is not used by circuit switched services, it may be utilized by GPRS. In this paper, the main aim is performance and comparison resource management policies with channel de-allocation in GPRS network. Three resource management policies is voice priority, R-reservation, dynamic reservation.

  • PDF

Channel Assignment and Routing using Traffic Profiles in Wireless Mesh Networks (무선 메쉬 네트워크에서 트래픽 프로파일을 고려하는 채널 할당 및 라우팅)

  • Park, Sook-Young;Lee, Sang-Kyu
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.374-385
    • /
    • 2010
  • Wireless mesh networks can be deployed for various networks from home networking to last-mile broadband Internet access. Wireless mesh networks are composed of mesh routers and mesh clients. In these networks, static nodes form a multi-hop backbone of a large wireless access network that provides connectivity to end-users' mobile terminals. The network nodes cooperate with each other to relay data traffic to its destinations. In order to increase connectivity and better performance, researchers are getting interested in multi-channel and multi-interface wireless mesh networks. In these networks, non-overlapping multiple frequency channels are used simultaneously to increase the aggregate bandwidth available to end-users. Recently, researches have focused on finding suitable channel assignments for wireless network interfaces, equiped in a mesh node, together with efficient routing to improve overall system throughput in wireless mesh networks. This goal can be achieved by minimize channel interference. Less interference among using channels in a network guarantees more aggregated channel capacity and better connectivity of the networks. In this thesis, we propose interference aware channel assignment and routing algorithms for multi-channel multi-hop wireless mesh networks. We propose Channel Assignment and Routing algorithms using Traffic Profiles(CARTP) and Routing algorithms allowing detour routing(CARTP+2). Finally, we evaluate the performance of proposed algorithms in comparison to results from previous methods using ns-2 simulations. The simulation results show that our proposed algorithms can enhance the overall network performance in wireless mesh networks.