• 제목/요약/키워드: Channel height

검색결과 466건 처리시간 0.022초

Heat Transfer and Frictions in the Rectangular Divergent Channel with Ribs on One Wall

  • Lee, MyungSung;Ahn, SooWhan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.352-357
    • /
    • 2016
  • An investigation of ribbed divergent channel was undertaken to determine the effect of rib pitch to height ratio on total friction factor and heat transfer results in the fully developed regime. The ribbed divergent rectangular channel with the channel exit hydraulic diameter ($D_{ho}$) to inlet channel hydraulic diameter ($D_{hi}$) ratio of 1.16 with wall inclination angle of 0.72 deg, at which the ratios (p/e) of 6,10, and 14 are considered. The ribbed straight channel of $D_{ho}/D_{hi}=1.0$ were also used. The ribbed divergent wall is manufactured with a fixed rib height (e) of 10 mm and the ratio of rib spacing (p) to height 6, 10, and 14. The measurement was run with range of Reynolds numbers from 24,000 to 84,000. The comparison shows that the ratio of p/e=6 has the greatest thermal performance in the divergent channel under two constraints; identical mass flow rate and identical pressure drop.

주기적으로 완전발달된 PCB 채널의 3차원 층류 자연대류 냉각에 관한 수치적 연구 (Numerical Study on the Three-Dimensional Natural Convection Cooling of Periodically Fully Developed PCB Channel)

  • 이관수;백창인;김우승
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2751-2761
    • /
    • 1994
  • A numerical investigation on the three-dimensional laminar natural convection heat transfer in the periodically fully developed PCB channel has been performed. When heat generating blocks mounted on the adiabatic wall make a channel with their facing shrouding wall, the flow inside the channel becomes periodically fully developed. A single module in the periodically fully developed region is chosen for computational domain in order to save computer storage and computational time. The periodic boundary condition is applied in the anlaysis. The effects of the parameters such as the Rayleigh number, the number of the modules, and the height of channel are examined to obtain the optimum condition for the enhancement of the cooling effectiveness. The result shows that the cooling effect is improved with increasing Rayleigh number and channel height, and decreasing the number of the module. The result also indicates that increasing the height of the channel and number of the module is recommended for a limited space.

딤플이 설치된 회전 유로의 높이가 열전달 계수에 미치는 영향에 대한 실험적 연구 (Effect of channel height on the heat transfer coefficient of a rotation dimpled channel)

  • 김석범;이용진;최은영;전창수;곽재수
    • 한국유체기계학회 논문집
    • /
    • 제13권3호
    • /
    • pp.30-36
    • /
    • 2010
  • The detailed heat transfer coefficients on a rotating dimpled channel were measured by the hue detection based the transient liquid crystal technique. The dimples were fabricated on the one side of the channel and the tested channel aspect ratio was 4, 6, and 12 with fixed channel width. Tested Reynolds number based on the channel hydraulic diameter was varied from 21,000 to 47,000. A stationary case and two different rotating conditions were tested so that the dimple fabricated surface became leading or trailing surface. For all rotating conditions, the minimum averaged heat transfer coefficient was measured for the channel aspect ratio of 6. Generally, the highest averaged heat transfer coefficient was observed for the highest aspect ratio cases due to increased dimple induced vortex strength.

V-형 리브가 부착된 냉각유로의 형상 최적설계 (Shape Optimization of Cooling Channel with V-shaped Ribs)

  • 이영모;김광용
    • 한국유체기계학회 논문집
    • /
    • 제10권2호
    • /
    • pp.7-15
    • /
    • 2007
  • A numerical procedure for optimizing the shape of three-dimensional channel with V-shaped ribs extruded on both walls has been carried out to enhance the turbulent heat transfer. The response surface based optimization is used as an optimization technique with Reynolds-averaged Wavier-stoked analysis. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for average heat transfer rate show good agreements with experimental data. The objective function is defined as a linear combination of heat transfer and friction loss-related terms with a weighting factor. Three dimensionless variables such as, rib pitch-to-rib height ratio, rib height-to-channel height ratio, and the attack angle of the rib are chosen as design variables. Nineteen training points obtained by D-optimal designs for three design variables construct a reliable response surface. In the sensitivity analysis, it is found that the objective function is most sensitive to the ratio of rib height-to-channel height ratio. And, optimal values of design variables have been obtained in a range of the weighting factor.

LBM simulation on friction and mass flow analysis in a rough microchannel

  • Taher, M.A.;Kim, H.D.;Lee, Y.W.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1237-1243
    • /
    • 2014
  • The aim of the present paper is to analyze the friction and mass flow in a rough microchannel using Lattice Boltzmann Method (LBM). The LBM is a kinetic method based on the particle distribution function, so it can be fruitfully used to study the flow dependence on Knudsen number including slip velocity, pressure drop in rough microchannel. The surface roughness elements are taken to be considered as a series of circular shaped riblets throughout the channel with relative roughness height up to a maximum 10% of the channel height. The friction coefficients in terms of Poiseuille number (Pn), mass flow rate and the flow behaviors have been discussed in order to study the effect of surface roughness in the slip flow regime at Knudsen number (Kn), ranging from 0.01 to 0.10. It is seen that the friction factor and the flow behaviors in a rough microchannel strongly depend on the rarefaction effect and the relative roughness height. The friction factor in a rough microchannel is higher than that in smooth channel but the mass flow rate is lower than that of smooth channel. Moreover, it is seen that the friction factor increased with relative roughness height but decreased with increasing the Kundsen number (Kn) whereas the mass flow rate is decreased with increasing both of surface roughness height and Knudsen number.

고분자전해질형 연료전지의 유로 채널 모사를 통한 단일 액적의 불안정성 관찰 (Investigation on the Liquid Water Droplet Instability in a Simulated Flow Channel of PEMFC)

  • 김보경;김한상;민경덕
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.93-98
    • /
    • 2008
  • To investigate the characteristics of water droplet on the gas diffusion layer from both top-view and side-view of the flow channel, a rig test apparatus was designed and fabricated with prism attached plate. This experimental device is used to simulate the growth of single liquid water droplet and its transport process with various air flow velocity and channel height. The contact angle hysteresis and height of water droplet are measured and analyzed. It is found that droplet tends towards to be instable by decreasing channel height, increasing flow velocity or making GDL more hydrophobic. Also, the simplified force balance model matches with experimental data only in a restricted range of operating conditions and shows discrepancy as the air flow velocity and channel height increases.

거친사각채널에서 왕복운동이 열전달에 미치는 효과 (The Effect of Reciprocating Motion on Heat Transfer in the Roughened Rectangular Channel)

  • 안수환;손강필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권6호
    • /
    • pp.646-652
    • /
    • 2002
  • The influence of reciprocating frequency and radius on heat transfer in the roughened rectangular channel is experimentally investigated. The aspect ratio (width/height) of the duct is 2.33 and the rib height is one fifteenth of the duct height. And the ratio of rib-to-rib distance to rib height is 10. The discrete ribs were periodically attached to the button wall of the duct with a parallel orientation. The parametric test matrix involves Reynolds number, reciprocating, and reciprocating radius, in the ranges, 1,000∼6,000, 1.7∼2.5 HB and 7∼15cm, respectively. The combined effects of reciprocating frequency and reciprocating radius have considerable influence on the heat transfer due to the modified vortex flow structure.

냉각효율 향상을 위한 경사진 리브의 형상최적설계 (Shape optimization of angled ribs to enhance cooling efficiency)

  • 김홍민;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.627-630
    • /
    • 2003
  • This work presents a numerical procedure to optimize the shape of three-dimensional channel with angled ribs mounted on one of the walls to enhance turbulent heat transfer. The response surface method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of flow and heat transfer. SST turbulence model is used as a turbulence closure. The width-to-height ratio of the rib, rib height-to-channel height ratio, pitch-to-rib height ratio and attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related terms with weighting factor. D-optimal experimental design method is used to determine the data points. Optimum shapes of the channel have been obtained for the weighting factors in the range from 0.0 to 1.0.

  • PDF

개수로 조도계수에 따른 유효 벽면거칠기 (Effective Wall Roughness corresponding to Roughness Coefficient of Open Channel Flow)

  • 최준우;권갑근;김형석;윤성범
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.176-179
    • /
    • 2008
  • In a numerical simulation of open channel turbulent flows, the determination of wall roughness height for wall function was studied. The roughness constant, based on the law-of-the -wall for flow on rough walls, obtained by experimental works for pipe flows is employed in general wall functions. However, this constant of wall function is the function of Froude number in open channel flows. Thus, the wall roughness should be determined by taking into account the effect of Froude number. In addition, the wall roughness should be corresponding to Manning's roughness coefficient widely used for open channels. In this study, the relation between wall roughness height as an input condition and Manning's roughness coefficient was investigated, and an equation for effective wall roughness height considering the characteristics of numerical models was proposed as a function of Manning's roughness coefficient.

  • PDF

障碍物 이 있는 平行平板사이 를 흐르는 亂流流動 의 熱傳達 解析 (Numerical Analysis of Turbulent Heat Transfer on the Channel with Slat Type Blockage)

  • 서광수;최영돈
    • 대한기계학회논문집
    • /
    • 제6권3호
    • /
    • pp.211-221
    • /
    • 1982
  • Numerical analysis has been made on the heat transfer of two dimensional turbulent channel with a slat type blockage. Especially the effects of the height of slat and Reynolds number on the heat transfer characteristics of channel wall have been investigated. The methods of accelerating the convergence of the numerical solution of governing differential equation have been also examined. Line-by-line iterative method shows higher convergence rate than point-by-point iterative method for solution of both momentum equation and energy equation. The results show that the ratio of heat transfer coefficient of the wall near the blockage to that of the fully developed flow increase with increasing the ratio of blockage to channel height and decreasing the Reynolds number. These trends of variation of heat transfer coefficient with respect to the height of slat and Reynolds number agree with those of Sparrow's experiment on the pipe flow with slat type blockage.