• Title/Summary/Keyword: Channel direction

Search Result 654, Processing Time 0.021 seconds

Analysis of Performance Characteristics by Inner Flow Path of Side Channel Type Ring Blower (사이드 채널형 링블로워의 임펠러 내부 유로에 따른 성능변화 분석)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Jeong, Kyung-Ho;Park, Woon-Jean
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.67-71
    • /
    • 2012
  • This study analyzed performance changes by an inner flow path of impeller groove for side channel type ring blower using CFD. Two models have the same side channel and clearance while one has an inner flow path and the other doesn't. To analyze the performance change of a ring blower, overall performance and local flow field were analyzed. For the overall performance, pressure increase and impeller torque were checked under the design flow condition. Under the design flow condition, pressure increase was greater for the model with the inner flow path. The model with the inner flow path showed improved efficiency because the area subject to torque decreased due to the creation of inner flow path. To analyze local flow field, a section was created from the representative location of each impeller groove toward the direction of radius. Inner channel pressure distribution depending on the rotation direction shows that the model with the inner flow path has pressure equilibrium of working fluid through the inner flow path. Velocity distribution of inside impeller groove shows that flow field was coupled and appeared to form an inner wall where the flow field was stabilized.

Optimal Inter-Element Spacing of FD-MIMO Planar Array in Urban Macrocell with Elevation Channel Modelling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4759-4780
    • /
    • 2017
  • Full Dimension multiple input multiple output (FD-MIMO) architecture employs a planar array design at the Base Station (BS) to provide high order multi-user MIMO (MU-MIMO) via simultaneous data transmission to large number of users. With FD-MIMO, the BS can also adjust the beam direction in both elevation and azimuth direction to concentrate the energy on the user of interests while minimizing the interference leakage to co-scheduled users in the same cell or users in the neighboring cells. In a typical highly populated macrocell environment, modelling the elevation angular characteristics of three-dimensional (3D) channel is critical to understanding the performance limits of the FD-MIMO system. In this paper, we study the throughput performance of FD-MIMO system with varying elevation angular spread and inter-element spacing using a 3D spatial channel model. Our results show that for a typical urban scenario, horizontal beamforming with correlated antenna spacing achieves optimal performance but by restricting the spread of elevation angles of departure, elevation beamforming achieves high array gain with wide inter-element spacing. We also realize significant gains due to spatial array processing via modelling the elevation domain and varying the inter-element spacing for both the transmitter and receiver.

Hybrid Beamformer of CDMA Reverse Link in the Correlated SIMO Channel (CDMA 역방향 링크의 상관된 SIMO 채널을 위한 복합형 빔 성형 방식)

  • 최영관;김동구
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.11
    • /
    • pp.81-86
    • /
    • 2004
  • Hybrid beamformer composed of Direction-of-Arrival (DOA) based scheme followed by Maximal Ratio Combining (MRC) is proposed to overcome the degradation due to inaccurate channel estimation caused by insufficient pilot power, which happens in conventional Single-Input Multiple-Output (SIMO) Code Division Multiple Access (CDMA) reverse link. The proposed scheme could provide more accurate channel estimation and interference reduction at the expense of diversity gam in the spatially correlated SIMO channel. As a result, hybrid scheme outperforms conventional MRC beamformer for six or more antennas in the channel environment, in which Angle-of-Spread (AOS) is within 30$^{\circ}$.

HEAT TRANSFER ENHANCEMENT IN CHANNEL FLOW BY A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS (주기적으로 배열된 원형 실린더를 이용한 채널 유동의 열전달 증진)

  • Jeong, Taekyeong;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • In this study, we consider heat transfer enhancement in laminar channel flow by means of an infinite streamwise array of equispaced identical circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall. An immersed boundary method was employed to facilitate to implement the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. Also, the Prandtl number is fixed as 0.7. For thermal boundary conditions on the solid surfaces, it is assumed that heat flux is constant on the channel walls, while the cylinder surfaces remain adiabatic. The presence of the circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to heat transfer enhancement on the channel walls. The Nusselt number averaged on the channel wall is presented for the wide ranges of Reynolds number and the gap. A significant heat transfer enhancement is noticed when the gap is larger than 0.8, while the opposite is the case for smaller gaps. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of varying the gap to enhance heat transfer from the channel walls.

Magnetic Creep in Narrow Channel (좁은 Channel에서의 자기적 Creep)

  • 박영문
    • 전기의세계
    • /
    • v.23 no.2
    • /
    • pp.55-61
    • /
    • 1974
  • Nature of magnetic creep phenomena in low coercive force films(Ni 80%-Fe 20%) in form of narrow channels imbedded in high coercive force films is studied in this work. Aluminium is evaporated on the hot glass substrate and eched free in the shape of narrow channels by photoetoetching method. then, Permalloy(Ni 80%, Fe 20%) is deposited on these Aluminium substrate under the uniform field of 30(Oe) to introduce anisotropy. Permalloy film on Al has a high coercive force and one on the substrate devoid of Al has how coercive force. Magnetic revers domain which is introduced at the end of channel grows under the a.c field in hard axis direction, in spite of very weak d.c field in easy axis direction. This creeping is investigated as a function of external fields and channel widths. Permalloy film thickness is 500.angs.-900.angs. and channel widths are 40, 51, 65, 81, 115.mu. respectively. Creeping increases as external field increases while it decreases with channel width decrease. Creep velocity in channels depends on the a.c field along hard axis, d.c field along easy axis and channel widths and its range is 1-10cm/sec in this experiment. From study of dependence of creep velocity on channel width, it can be concluded that creep velocity is expressed in form of v=v$_{0}$ exp .alpha.(H-H$_{0}$) where .alpha. is a function of a.c field along hard axis and H is driving d.c field along easy axis, H$_{0}$ is not a coercive force of film as usuall expected but the d.c threshold field along easy axis which is a function of channel width. This characteristic is also confirmed by the study of dependence of creep velocity upon easy axis field strength. Value of .alpha. obtained is 1.3-2.3cm/sec We depending upon film charactor, hard axis field strength and frequency.uency.

  • PDF

The Rearch of the Young-su(迎隨) (영수보사(迎隨補瀉) 연구(硏究))

  • Im, Jin-Seok
    • Journal of Korean Medical classics
    • /
    • v.12 no.2
    • /
    • pp.282-292
    • /
    • 1999
  • In oriental medicine Acupuncture treatment is one of the most valuable therapy. Through the acupuncture humen have been healed many diseaes with his own natural therapic power, without medicine or surgery ect. But there have not formed a clear definition on the supplement & eradication(補瀉). I recognised the difference between the original meaning of Young-su(迎隨) mentioned in $\ll$Whang-Je-Nae-Kyung(黃帝內經)$\gg$ and Young-su-Bo-Sa(迎隨補瀉) that are recently used. The results were summerized as follow; 1. In the $\ll$Whang-Je-Nae-Gyung$\gg$, when they give medical teatment, they have totally used all methods of the supplement & eradication(補瀉). Therefore as now divided into respiration, speed, rotation and close-open supplement & eradication(補瀉) have many problomes. And Young-su(迎隨) did not mean the treatement of supplement and eradication which go with or against the flowing of channel energy(經氣). Young-su(迎隨) is not a simple technique of treatment, but is the totall principle of the supplement and eradication. 2. The direction of channel energy(經氣) connected with the O-su point (五輸穴) is from extremities to the trunk of body, therefore the direction of supplement is to the trunk of body and the direction of eradication is to extermities. 3. In the case of using the treatment which go with or against the flowing of channel energy(經氣), in oder to avoid the confusion of term, it must be defined another term. 4. It is necessary that we must define the procedure of supplement & eradication, and the objective indication that ascertain whether the doctor's purposes are really obtained.

  • PDF

A Study on Optimal Hydrophone Arrangement for The Direction Finding of High Speed Moving Target in Underwater (수중에서 고속 기동하는 표적의 방위 탐지를 위한 최적의 청음기 배치 연구)

  • Han, Min-Su;Choi, Jae-Yong;Kang, Dong-Seok;Son, Kweon;Lee, Phil-ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.369-375
    • /
    • 2017
  • One of good DF(Direction Finding) methods is based on TDOA(Time Difference of Arrival) estimation when finding underwater moving target. For small DF error, high time resolution A/D(Analog-to-digital) conversion board and long baseline are needed. But the result of sea trial about close-range and high speed moving target, spatial correlation coefficient and appeared poor properties below 0.3 when hydrophone arrangement are separated over 6 ${\lambda}$ because of underwater fading channel. And we also find out that the distance between hydrophone should be under 4 ${\lambda}$ apart to take advantage of spatial correlation coefficient gain and performance of DF in underwater moving channel environments.

Lagrangian Investigation of Turbulent Channel Flow (II) - Analysis of Lagrangian Statistics - (난류채널유동의 라그란지안 해석 (II) - 라그란지안 통계분석 -)

  • Choi, Ho-Jong;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.867-876
    • /
    • 2003
  • The Lagrangian dispersion of fluid particles in inhomogeneous turbulence is investigated by a direct numerical simulation of turbulent channel flow. Four points Hermite interpolation in the homogeneous direction and Chebyshev polynomials in the inhomogeneous direction is adopted to simulate the fluid particle dispersion. An inhomogeneity of Lagrangian statistics in turbulent boundary layer is investigated by releasing many particles at several different wall-normal locations and tracking those particles. The fluid particle dispersions and Lagrangian structure functions of velocity are scaled by the Kolmogorov similarity. The auto-correlations of velocity and acceleration are shown at the different releasing locations. Effect of initial particle location on the dispersion is analyzed by the probability density function at the several downstreams and time instants.

Parametric Study of Instability in Obstructed Channel Flow (장애물이 부착된 평판 사이 유동의 불안정성에 관한 파라미터적 연구)

  • Hwang, In-Sang;Yang, Gyeong-Su;Kim, Do-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.546-553
    • /
    • 2001
  • A Parametric study is numerically carried out for flow fields in a two-dimensional plane channel with thin obstacles(“baffles and blocks”) mounted symmetrically in the vertical direction and periodically in the streamwise direction. The aim of this investigation is to understand how various geometric conditions influence the critical characteristics and pressure drop. A range of BR(the ratio of baffle interval to channel height) between 1 and 5 is considered. Especially when BR is equal to 3, for which the critical Reynolds number turned out to be minimal, we add blocks in the center region in order to study their destabilizing effects on the flows. It is revealed that the critical Reynolds number is further decreased by the presence of the block.

Radial Thickness of Ice Jam in Channel Bends

  • Yoon, Sei-eui;Lee, Jong-tae
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.61-71
    • /
    • 1990
  • The characteristics of radial thickness of ice jam at the center part of channel bends were analyzed briefly in this paper. Jam thickness in channel bends increases both toward the inner bank, and dowmstream. For this study, slope at the jam's underside was assumed to be liner with similarity of radial slope of bed in alluvial bends. Radial slope at the jam's underside in floating ice elements was estimated using the force equilibrium theory in the radial direction. The eqution which can be estimated the radial slope of ice jam was suggested using Falcon and Kennedy's bed layer theory. Experimental data, which were measured at the center part of cross-section in a single 180-degree bend, were compared to the calculated values using the suggested equtions. The result shows that the calcultated values were smaller than the measured ones. Ot is considered that the estimated value of shear stress in the radial direction may be smaller than the actual and two-layer model may be not suibable for alluvial bend flow.

  • PDF