• Title/Summary/Keyword: Channel characteristics

Search Result 3,694, Processing Time 0.026 seconds

Channel Orientation Dependent Electrical Characteristics of Low Temperature Poly-Si Thin-film Transistor Using Sequential Lateral Solidification Laser Crystallization

  • Lai, Benjamin Chih-ming;Yeh, Yung-Hui;Liu, Bo-Lin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1263-1265
    • /
    • 2007
  • The electrical characteristics of low temperature poly-Si (LTPS) thin-film transistors (TFT) with channel parallel and perpendicular to the direction of lateral growth were studied. The poly-Si film was crystallized using sequential lateral solidification (SLS) laser crystallization technique. The channel orientation dependent turn-on characteristics were investigated by using gated-diodes and capacitance-voltage measurements

  • PDF

Analysis of the electrical characteristics with back-gate bias in n-channel thin film SOI MOSFET (N-채널 박막 SOI MOSFET의 후면 바이어스에 따른 전기적 특성 분석)

  • 이제혁;임동규;정주용;이진민;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.461-463
    • /
    • 1999
  • In this paper, we have systematically investigated the variation of electrical characteristics with back-gate bias of n-channel SOI MOSFET\\`s. When positive bias is applied back-gate surface is inverted and back channel current is increased. When negative bias is applied back-gate surface is accumulated but it does not affect to the electrical characteristics.

  • PDF

Conjugate Heat Transfer Characteristics in a Ribbed Channel:Effect of Reynolds Number and Heat Capacity Ratio (요철이 설치된 채널 내에서 레이놀즈수와 열용량비에 따른 복합열전달 특성)

  • Song, Jeong-Chul;Ahn, Joon;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2297-2302
    • /
    • 2007
  • Numerical simulations are conducted to analyze conjugate heat transfer characteristics in a ribbed channel. In this simulation, the effects of Reynolds number and heat capacity of the solid channel wall on convective heat transfer are observed in the turbulent flow regime. In the case of the conducting wall against isothermal wall, the relative ratio of the thermal resistance between the solid wall and the flow field varies with Reynolds number. Thus the characteristics of the conjugate heat transfer are changed with the Reynolds number. Heat capacity ratio affects the temperature fluctuation inside solid wall. The temperature fluctuation inside the solid wall decreases with increasing the heat capacity of the solid wall so that the convective heat transfer increases. When the thermal conductivity ratio is smaller than 10, the effects of flow characteristics on heat transfer are changed.

  • PDF

CSK/SS-DS Signal Transmission Characteristics in a Poor Channel Environment (열악한 채널 환경하에서의 CSK/SS-DS 신호의 전송 특성)

  • 오경석;이우재;신위재;강석규;주창복
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.243-247
    • /
    • 1999
  • For the purpose of LAN or data transmission line design with high speed and reliability using power lines, in this paper, we present CSK/SS-DS signal transmission characteristics simulations with changing channel characteristics due to impedance fluctuation. And we also simulated the signal transmissions with a strong impulsive burst noise and with a gaussian random noise. We introduce a simple channel equalization filtering method that solves the synchronization problem of CSK/SS-DS with fluctuating channel characteristics or low S/N ratio.

  • PDF

The Analysis of Transfer and Output characteristics by Stress in Polycrystalline Silicon Thin Film Transistor (다결정 실리콘 박막 트랜지스터에서 스트레스에 의한 출력과 전달특성 분석)

  • 정은식;안점영;이용재
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.145-148
    • /
    • 2001
  • In this paper, polycrystalline silicon thin film transistor using by Solid Phase Crystallization(SPC) were fabricated, and these devices were measured and analyzed the electrical output and transfer characteristics along to DC voltage stress. The transfer characteristics of polycrystalline silicon thin film transistor depended on drain and gate voltages. Threshold voltage is high with long channel length and narrow channel width. And output characteristics of polycrystalline silicon thin film transistor flowed abruptly much higher drain current. The devices induced electrical stress are decreased drain current. At last, field effect mobility is the faster as channel length is high and channel width is narrow.

  • PDF

Characteristics of Anode Current due to the Impurity Concentration and the Channel Length of Lateral MOS-controlled Thyristor (수평 구조의 MOS-controlled Thyristor에서 채널 길이 및 불순물 농도에 의한 Anode 전류 특성)

  • Jeong, Tae-Woong;Oh, Jung-Keun;Lee, Kie-Young;Ju, Byeong-Kwon;Kim, Nam-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1034-1040
    • /
    • 2004
  • The latch-up current and switching characteristics of MOS-Controlled Thyristor(MCT) are studied with variation of the channel length and impurity concentration. The proposed MCT power device has the lateral structure and P-epitaxial layer in substrate. Two dimensional MEDICI simulator is used to study the latch-up current and forward voltage-drop from the characteristics of I-V and the switching characteristics with variation of impurity concentration. The channel length and impurity concentration of the proposed MCT power device show the strong affect on the anode current and turn-off time. The increase of impurity concentration in P and N channels is found to give the increase of latch-up current and forward voltage-drop.

Measurement-Based Propagation Channel Characteristics for Millimeter-Wave 5G Giga Communication Systems

  • Lee, Juyul;Liang, Jinyi;Kim, Myung-Don;Park, Jae-Joon;Park, Bonghyuk;Chung, Hyun Kyu
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1031-1041
    • /
    • 2016
  • This paper presents millimeter-wave (mmWave) propagation characteristics and channel model parameters including path loss, delay, and angular properties based on 28 GHz and 38 GHz field measurement data. We conducted measurement campaigns in both outdoor and indoor at the best potential hotspots. In particular, the model parameters are compared to sub-6 GHz parameters, and system design issues are considered for mmWave 5G Giga communications. For path loss modeling, we derived parameters for both the close-in free space model and the alpha-beta-gamma model. For multipath models, we extracted delay and angular dispersion characteristics including clustering results.

A Study on Threshold Voltage and I-V Characteristics by considering the Short-Channel Effect of SOI MOSFET (SOI MOSFET의 단채널 효과를 고려한 문턱전압과 I-V특성 연구)

  • 김현철;나준호;김철성
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.8
    • /
    • pp.34-45
    • /
    • 1994
  • We studied threshold voltages and I-V characteristics. considering short channel effect of the fully depleted thin film n-channel SOI MOSFET. We presented a charge sharing model when the back surface of short channel shows accumulation depletion and inversion state respectively. A degree of charge sharing can be compared according to each of back-surface conditions. Mobility is not assumed as constant and besides bulk mobility both the mobility defined by acoustic phonon scattering and the mobility by surface roughness scattering are taken into consideration. I-V characteristics is then implemented by the mobility including vertical and parallel electric field. kThe validity of the model is proved with the 2-dimensional device simulation (MEDICI) and experimental results. The threshold voltage and charge sharing region controlled by source or drain reduced with increasing back gate voltage. The mobility is dependent upon scattering effect and electric field. so it has a strong influence on I-V characteristics.

  • PDF

CFD Analysis on Two-phase Flow Behavior of Liquid Water in Cathode Channel of PEM Fuel Cell (PEM 연료전지 공기극 유로에서 물의 가동에 대한 CFD 해석)

  • Kim, Hyun-Il;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong;Kim, Young-Gyu
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.8-15
    • /
    • 2007
  • Liquid water in flow channel is an important factor that limits the steady and transient performance of PEM fuel cells. A computational fluid dynamics study based on the volume-of-fluid [VOF] multi-phase model was conducted to understand the two-phase flow behavior of liquid water in cathode gas channels. The liquid water transport in $180^{\circ}{\Delta}$ bends was investigated, where the effects of surface characteristics (hydrophilic and hydrophobic surfaces], channel geometries (rectangular and chamfered corners], and air velocity in channel were discussed. The two-phase flow behavior of liquid water with hydrophilic channel surface and that with hydrophobic surface was found very different; liquid water preferentially flows along the corners of flow channel in hydrophilic channels while it flows in rather spherical shape in hydrophobic channels. The results showed that liquid water transport was generally enhanced when hydrophobic channel with rounded corners was used. However, the surface characteristics and channel geometries became less important when air velocity was increased over 10m/s. This study is believed to provide a useful guideline for design optimization of flow patterns or channel configurations of PEM fuel cells.

  • PDF

Consumer Characteristics and Shopping for Fashion in the Omni-channel Retail Environment

  • RYU, Jay Sang
    • Asian Journal of Business Environment
    • /
    • v.9 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • Purpose: Omni-channel retailing is a new retail phenomenon. Consumers in the omni-channel environment do not rely on one channel but integrate different channels from the same retailers freely during a particular shopping journey. The purpose of this study is to better understand omni-channel shoppers in the fashion retailing context. The present study uses consumer characteristics -- fashion innovativeness, technology innovativeness, and fashion purchase involvement -- as determinants predicting consumers' omni-channel shopping intentions for fashion products. Research design, data, and methodology: Data were collected from 403 U.S. consumers, and the Structural Equation Modeling (SEM) was performed to test proposed hypotheses. The survey for this research consisted of three parts. The first part measured consumer traits in terms of their innovativeness and purchase involvement. The second part was designed to measure consumers' omni-channel shopping intentions, and the third part gathered consumer demographic information. Results: The findings confirmed that fashion innovativeness, technology innovativeness, and fashion purchase involvement positively affected consumers' omni-channel shopping intentions. Conclusions: Fashion retailers should integrate various customer touchpoints and offer mobile-enabled technologies to boost consumer traffic to both online and offline stores. They also need to create a shopping environment that is optimized for customer engagement in various shopping processes and allow them to explore different shopping channel options for best purchase decisions.