• Title/Summary/Keyword: Channel bonding

Search Result 92, Processing Time 0.024 seconds

Carbon Nanotube Reinforced Metal Matrix Nanocomposites via Equal Channel Angular Pressing

  • Quang, Pham;Jeong, Young-Gi;Yoon, Seung-Chae;Hong, Sun-Ig;Hong, Soon-Hyung;Kim, Hyoung-Seop
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.980-981
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of Carbon nanotube (CNT)/metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT/Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature.

  • PDF

A Study on Strategies to Improve the Effectiveness of Influencer Advertising

  • Chanuk Park;Sin-Bok Lee;Do-Eui Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.1-16
    • /
    • 2023
  • Influencer advertising, which has gained significant attention in academia and industry, is widely adopted as a digital marketing strategy. This study empirically analyzes the impact of perceived influencer channel attributes and ad attributes on the suitability of advertisements and their effects on consumers' positive and negative advertising behaviors. The research aims to identify various factors that can enhance the effectiveness of influencer advertising. The results reveal that among the influencer channel attributes, informativeness and intimacy have a positive impact on ad suitability, while ad clutter has a negative impact. Additionally, ad-influencer fit positively affect ad attention and negatively influences ad avoidance. Based on these findings, companies can enhance the effectiveness of influencer advertising by first selecting influencers who align well with the advertisement and emphasizing informativeness and emotional bonding to improve ad suitability. Moreover, the study suggests that influencer advertising strategies can be effective as long as they avoid excessive ad clutter, as it diminishes ad suitability. Marketing practitioners and advertising planners can utilize these insights to formulate more effective influencer advertising strategies.

The Characteristics of Thermal Hydraulic Performance for Micro Plate Heat Exchanger with Straight channel (직관채널의 마이크로 판형열교환기 열적 성능 특성)

  • Kim, Yoon-Ho;Lee, Kyu-Jung;Seo, Jang-Won;Jeon, Seung-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.767-774
    • /
    • 2008
  • This paper presented the heat transfer and pressure drop characteristics for micro plate heat exchanger with straight channel. The metal sheets for straight channel are manufactured by chemical etching and fabricated micro plate heat exchangers by using the vacuum brazing of bonding technology. The performance experiments are performed within the Reynolds numbers range of 15$\sim$250 under the same flow rate conditions for hot and cold sides. The inlet temperature of hot and cold water are conducted in the range of $30^{\circ}C{\sim}50^{\circ}C$ and $15^{\circ}C{\sim}25^{\circ}C$, respectively. Heat transfer rate and pressure drop are evaluated by the Reynolds numbers and mass flow rates as the inlet temperature variations of the hot and cold sides. Correlations of Nusselt number and friction factor are suggested for micro plate heat exchanger with straight channel using the results of performance experiment.

A Study of Convergence Modem Design for Giga Internet Service over CATV Network (CATV 망에서의 기가 인터넷 서비스를 위한 융복합 모뎀 설계에 관한 연구)

  • Park, Yong-Seo;Lee, Jae-Kyoung
    • Journal of Digital Convergence
    • /
    • v.14 no.10
    • /
    • pp.261-269
    • /
    • 2016
  • This paper aims to propose a novel technology of network convergence to provide ultra high speed internet services over CATV networks, by which a CMC(cable modem concentrator) and CM(cable modem) of 1Gbps level are designed. This technology not only lowers the production cost in comparison to the existing bonding technology with DOCSIS specification but also enables the adjustment of data speed based on the channel bandwidth. According to the experiments, when convolutional code rate with 128QAM is changed to 1/2, 2/3, 3/4 and 7/8, the data recorded the maximum transmission speed of up to 299 Mbps at the zero error rate. As the convolutional code rates with 256QAM is increased, it showed 334Mbps at the error rate of $10^{-5}$. Based on the findings of this paper, if we secure the channel bandwidth of 200MHz and adjust the modulation order of QAM and the convolution code rate depending on the channel status, we can get the transmission speed of more than 1Gbps, which is much more competitive in its function and price than the existing technology based on DOCSIS.

Channel Interference Analysis of Wideband WLAN Based IEEE802.11n for 3rd Generation Digital Signage (3세대 디지털 사이니지를 위한 IEEE802.11n 광대역 무선랜에 대한 채널 간섭 분석)

  • Ko, Hojeong
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.1
    • /
    • pp.6-11
    • /
    • 2016
  • In this paper, we have analyzed the effects of co-channel, adjacent-channel, and the human shield(Body Blockage) for wideband WLAN based on the IEEE802.11n 40MHz channel bandwidth required for high speed digital signage service. Simulation results show that wideband WLAN can be operated with 78 interferers over 63m distance in co- channel, 80 interferer over 61m distance in adjacent channel. By applying the mitigation method for reducing the interference, we have confirmed that protection distance is improved to 51m using beamforming, and 40m using cognitive radio in co-channel interference. Also body blockage interference is reduced using adaptive channel bandwidth, C/I ratio, beamforming, power control mitigation methodology.

Photophysical properties of Khellin

  • Shim, Sang-Chul;Kang, Ho-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.341-344
    • /
    • 1987
  • The fluorescence quantum yield of khellin is sensitive to temperature and to the nature of solvents, especially the proton-donating ability in solute-to-solvent hydrogen bonding. The intersystem crossing quantum yields are 0.4 and 0.15 in acetonitrile and ethanol, respectively. The fluorescence quantum yields in ethanol and isopentane at 77 K are 0.61 and 0.07, respectively, both of which are much larger than the values at room temperature. The phosphorescence lifetime is relatively long and decreases with decreasing solvent polarity. The phosphorescence to fluorescence quantum yield ratio is very small and remains unchanged in various solvents. The results suggest that internal conversion is an important decay channel of the excited singlet state of khellin, especially in the hydrogen-bonding hydroxyl solvents.

Mixing Efficiency Evaluation in Y-channel Micromixer Using LIF Confocal Microscope (LIF 공초점 현미경을 이용한 Y-채널 마이크로믹서의 혼합 효율 평가)

  • Kim, Kyoung-Mok;Shin, Yong-Su;Ahn, Yoo-Min;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.159-166
    • /
    • 2007
  • Mixing between two or more reagents is one of important processes in biochemical microfluidics. In efficient micromixer design, it is essential to analyze flow pattern and evaluate mixing efficiency with good precision. In this work, mixing efficiency for Y-channel micromixer is measured by fluorescence intensity using LIF(Laser Induced Fluorescence) Confocal Microscope. The Y-channel micromixers are fabricated with polydimethylsiloxane(PDMS) and those are bonded to glass plate through Plasma bonding. Nile Blue A is injected into the micromixer as a fluorescence dye for measuring of fluorescence intensity by He/Ne laser. For visualization of the flow pattern, dynamic image capturing is carried out using CAM scope. For the comparison with computer simulation, modified SIMPLE algorithm for incompressible flow equation is solved for the same geometry as in the experiment. Throughout the experiments and computer simulation, accurate mixing efficiency evaluation process for a PDMS Y-channel micromixer is established.

Simulation Study of a Large Area CMOS Image Sensor for X-ray DR Detector with Separate ROICs (센서-회로 분리형 엑스선 DR 검출기를 위한 대면적 CMOS 영상센서 모사 연구)

  • Kim, Myung Soo;Kim, Hyoungtak;Kang, Dong-uk;Yoo, Hyun Jun;Cho, Minsik;Lee, Dae Hee;Bae, Jun Hyung;Kim, Jongyul;Kim, Hyunduk;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • There are two methods to fabricate the readout electronic to a large-area CMOS image sensor (LACIS). One is to design and manufacture the sensor part and signal processing electronics in a single chip and the other is to integrate both parts with bump bonding or wire bonding after manufacturing both parts separately. The latter method has an advantage of the high yield because the optimized and specialized fabrication process can be chosen in designing and manufacturing each part. In this paper, LACIS chip, that is optimized design for the latter method of fabrication, is presented. The LACIS chip consists of a 3-TR pixel photodiode array, row driver (or called as a gate driver) circuit, and bonding pads to the external readout ICs. Among 4 types of the photodiode structure available in a standard CMOS process, $N_{photo}/P_{epi}$ type photodiode showed the highest quantum efficiency in the simulation study, though it requires one additional mask to control the doping concentration of $N_{photo}$ layer. The optimized channel widths and lengths of 3 pixel transistors are also determined by simulation. The select transistor is not significantly affected by channel length and width. But source follower transistor is strongly influenced by length and width. In row driver, to reduce signal time delay by high capacitance at output node, three stage inverter drivers are used. And channel width of the inverter driver increases gradually in each step. The sensor has very long metal wire that is about 170 mm. The repeater consisted of inverters is applied proper amount of pixel rows. It can help to reduce the long metal-line delay.

An Experimental Study on the Evaporative Heat Transfer Characteristics of R-134a in a Micro-Channel Heat Exchanger (마이크로채널 열교환기에서 R-134a의 증발열전달 특성에 관한 실험적 연구)

  • Lee, Hae-Seung;Jeon, Dong-Soon;Kim, Young-Lyoul;Kim, Yong-Chan;Kim, Seon-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.113-120
    • /
    • 2010
  • An experimental investigation was carried out to examine the evaporative heat transfer characteristics of R-134a in a micro-channel heat exchanger. The micro-channel heat exchanger used in this study was a sort of plate heat exchanger. Micro-channels were fabricated on the SUS304 plate by the photo-etching process: 13 sheets of plates were stacked and bonded by the diffusion bonding process. The effects of the evaporating temperature, mass flux of R-134a, and inlet temperature of water were examined. As the difference between the inlet temperatures of R-134a and water increased, the heat transfer rate increased. The evaporative heat transfer coefficients obtained in this study range from 0.67 to 6.23 kW/$m^2{\cdot}^{\circ}C$. The experimental correlation for the Nusselt number as a function of the Reynold number and $\Theta$ was suggested for the micro-channel heat exchanger.

A Novel Body-tied Silicon-On-Insulator(SOI) n-channel Metal-Oxide-Semiconductor Field-Effect Transistor with Grounded Body Electrode

  • Kang, Won-Gu;Lyu, Jong-Son;Yoo, Hyung-Joun
    • ETRI Journal
    • /
    • v.17 no.4
    • /
    • pp.1-12
    • /
    • 1996
  • A novel body-tied silicon-on-insulator(SOI) n-channel metal-oxide-semiconductor field-effect transistor with grounded body electrode named GBSOI nMOSFET has been developed by wafer bonding and etch-back technology. It has no floating body effect such as kink phenomena on the drain current curves, single-transistor latch and drain current overshoot inherent in a normal SOI device with floating body. We have characterized the interface trap density, kink phenomena on the drain current ($I_{DS}-V_{DS}$) curves, substrate resistance effect on the $I_{DS}-V_{DS}$ curves, subthreshold current characteristics and single transistor latch of these transistors. We have confirmed that the GBSOI structure is suitable for high-speed and low-voltage VLSI circuits.

  • PDF