• 제목/요약/키워드: Channel Beam

Search Result 398, Processing Time 0.023 seconds

Buckling behavior of cold-formed steel lipped channel beam-column members under monotonic and cyclic loadings

  • Yilmaz Yilmaz;Serhat Demir;Ferhan Ozturk
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.435-446
    • /
    • 2024
  • The use of cold-formed steel members is increasing day by day, especially in regions where earthquake effects are intensively experienced. Among cold-formed steel members (CFS), "channel" members are used more than other crosssectional members, especially in buildings or industrial structures. In recent years, several studies have been carried out on the axial load and flexural performance of these members under monotonic loading. In this study, CFS beam-column members were cyclically and monotonically loaded under combined axial load and biaxial bending moments, and their buckling behavior, load bearing capacity, stiffness, ductility, and energy absorption capacity were determined. For this purpose, monotonic and cyclic loading experiments were carried out on 30 CFS channel members at 15 different eccentricities. Then, material properties were determined by axial monotonic tensile and very low cycle fatigue tests for use in numerical studies. From the experimental results, the buckling modes, bearing capacities, ductility, stiffness, and energy absorption capacities of the members were obtained. The characteristics of the members were compared according to the stress state of the lips. According to the data obtained from the displacement transducer placed on the lips and on the back of the web, information about the buckling mode and curvature of the members was obtained. Finally, monotonic, and cyclic loading results were compared to determine the differences in the buckling behavior of the members.

Coherent Beam Combining with Commercial Diffractive Optical Elements (상업용 회절 광학 소자를 활용한 결맞음 빔결합 연구)

  • Daegeon Ryu;Youngchan Kim;Young-Chul Noh;Byunghyuck Moon;Eunji Park;Kihyuck Kim;Seongmook Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.157-163
    • /
    • 2024
  • We developed a 3-channel fiber laser with a common seed and a phase control system for laser beam combining through a diffractive optical element. Beam combining was performed by adjusting the angles of the beams incident on the diffractive optical elements, and the phase of each beam was controlled to maximize the intensity of the combined laser beam. The power of the 3-channel laser before passing through the diffractive optical elements is about 65 mW. The power of the combined beam varied between 2.9 mW and 48.3 mW depending on the phase change of each channel. Through phase control, the output of the combined beam can be maintained at 42 mW for more than 91.8% of the total time. It is expected that higher combining efficiency can be achieved by improving the transmittance of the diffractive optical elements and the performance of the phase control system.

Estimation of system parameters by vector channel lattice filter (벡터채널 격자필터를 이용한 시스템 파라미터 추정)

  • 장세경;황원걸;기창두
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.917-922
    • /
    • 1992
  • Resently there have been increasing interests in adaptive identification and control of flexible structures. In this paper, vector channel lattice filters and their applications to parameter identification of flexible structures are studied. Numerical examples are given to show its performace to estimate the natural frequencies of 5-mass system. It is observed that vector channel lattice filter convetges quickly and identifies modal frequencies even when some of them is unobservable for some measurements. Experimental results demonstrated the ability of the lattice filter to identify the natural frequencies and the damping ratios of cantilever beam and pipe.

  • PDF

Monopulse Secondary Surveillance Radar Antenna with Sum/Difference/SLS Channels (합/차/부엽 억제 채널을 갖는 모노펄스 보조 감시 레이더(용) 안테나)

  • Choi, Jong-Hwan;Chae, Hee-Duck;Park, Jong-Kuk;Na, Hyung-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.720-728
    • /
    • 2011
  • In this paper, development of the monopulse secondary surveillance radar antenna which can be used for IFF system is presented. This antenna that is passive linear array is comprised of the row-feeder and several array-elements. The row-feeder provides sum, different and SLS(Sidelobe Supression) channels which are optimized the distribution of the power and phase ratio. The azimuthe sidelobe level of the sum channel beam pattern is -20 dBc or less. The SLS channel covers the sidelobe of the sum-chanel in the whole azimuth angle range. And the difference channel is used to perform the mono-pulse function, improves the detection accuracy in the azimuth direction. Meanwhile, the arrayelement makes shaped beam in the elevation angle, in order to eliminate the clutter and multipath effects from the ground. Performance of the antenna developed is verified by the measurement of S-parameters and far-field beam pattern, and satisfies all of the development specifications well.

Computation of Dynamic Fluid-Structure Interaction in a 2-Dimensional Laminar Channel Flow Divided by a Plate (판으로 나뉘어진 2차원 충류 채널유동에서 동적 유체-구조물 상호작용 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1738-1746
    • /
    • 2002
  • In the FSI (Fluid-Structure Interaction) problems, two different governing equations are to be solved together. One is fur the fluid and the other for the structure. Furthermore, a kinematic constraint should be imposed along the boundary between the fluid and the structure. We use the combined formulation, which incorporates both the fluid and structure equations of motion into a single coupled variational equation so that it is not necessary to calculate the fluid force on the surface of structure explicitly when solving the equations of motion of the structure. A two-dimensional channel flow divided by a Bernoulli-Euler beam is considered and the dynamic response of the beam under the influence of channel flow is studied. The Navier-Stokes equations are solved using a P2P1 Galerkin finite element method with ALE (Arbitrary Lagrangian-Eulerian) algorithm. The internal structural damping effect is not considered in this study and numerical results are compared with a previous work fer steady case. In addition to the Reynolds number, two non-dimensional parameters, which govern this fluid-structure system, are proposed. It is found that the larger the dynamic viscosity and density of the fluid are, the larger the damping of the beam is. Also, the added mass is found to be linearly proportional to the density of the fluid.

The Softest handoff Design using iterative decoding (Turbo Coding)

  • Yi, Byung-K.;Kim, Sang-G.;Picknoltz, Raymond-L.
    • Journal of Communications and Networks
    • /
    • v.2 no.1
    • /
    • pp.76-84
    • /
    • 2000
  • Communication systems, including cell-based mobile communication systems, multiple satellite communication systems of multi-beam satellite systems, require reliable handoff methods between cell-to-cell, satellite-to-satellite of beam-to-team, respectively. Recent measurement of a CDMA cellular system indicates that the system is in handoff at about 35% to 70% of an average call period. Therefore, system reliability during handoff is one of the major system performance parameters and eventually becomes a factor in the overall system capacity. This paper presents novel and improved techniques for handoff in cellular communications, multi-beam and multi-satellite systems that require handoff during a session. this new handoff system combines the soft handoff mechanism currently implemented in the IS-95 CDMA with code and packet diversity combining techniques and an iterative decoding algorithm (Turbo Coding). the Turbo code introduced by Berrou et all. has been demonstrated its remarkable performance achieving the near Shannon channel capacity [1]. Recently. Turbo codes have been adapted as the coding scheme for the data transmission of the third generation international cellular communication standards : UTRA and CDMA 2000. Our proposed encoder and decoder schemes modified from the original Turbo code is suitable for the code and packet diversity combining techniques. this proposed system provides not only an unprecedented coding gain from the Turbo code and it iterative decoding, but also gain induced by the code and packet diversity combining technique which is similar to the hybrid Type II ARQ. We demonstrate performance improvements in AWGN channel and Rayleigh fading channel with perfect channel state information (CSI) through simulations for at low signal to noise ratio and analysis using exact upper bounding techniques for medium to high signal to noise ratio.

  • PDF

Interfacial shear resistance of angle shear connectors welded to concrete filled U-shaped CFS beam

  • Oh, Hyoung Seok;Shin, Hyeongyeop;Ju, Youngkyu;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.311-325
    • /
    • 2022
  • For multi-story structural systems, Korean steel industry has fostered development of a steel-concrete composite beam. Configuration of the composite beam is characterized by steel angle shear connectors welded to a U-shaped cold formed-steel beam. Effects of shear connector orientation and spacing were studied to evaluate current application of the angle shear connector design equation in AC495. For the study, interfacial shear resistance behavior was investigated by conducting 24 push-out tests and attuned using unreinforced push-out specimens. Interfacial shear to horizontal slip response was reported along with corresponding failure patterns. Pure shear connector strength was also evaluated by excluding concrete shear contribution, which was estimated in relation to steel beam-slab interface separation or interfacial crack width.

Performance Characteristics of a 50-kHz Split-beam Data Acquisition and Processing System (50 kHz Split Beam 데이터 수록 및 처리 시스템의 성능특성)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.798-807
    • /
    • 2021
  • The directivity characteristics of acoustic transducers for conventional single-beam echo sounders considerably limit the detection of fish-size information in acoustic field surveys. To overcome this limitation, using the split-aperture technique to estimate the direction of arrival of single-echo signals from individual fish distributed within the sound beam represents the most reliable method for fish-size classification. For this purpose, we design and develop a split-beam data acquisition and processing system to obtain fish-size information in conjunction with a 50-kHz single-beam echo sounder. This split-beam data acquisition and processing system consists of a notebook PC, a field-programmable gate array board, an external single-transmitter module with a matching network, and four-channel receiver modules operating at a frequency of 50-kHz. The functionality of the developed split-beam data processor is tested and evaluated. Acoustic measurements in an experimental water tank showed that the developed data acquisition and processing system can be used as a fish-sizing echo sounder to estimate the size distribution of individual fish, although an external single-transmitter module with a matching network is required.

Focused Electron Beam-Controlled Graphene Field-Effect Transistor

  • Kim, Songkil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.360-366
    • /
    • 2020
  • Focused electron beams with high energy acceleration are versatile probes. Focused electron beams can be used for high-resolution imaging and multi-mode nanofabrication, in combination with, molecular precursor delivery, in an electron microscopy environment. A high degree of control with atomic-to-microscale resolution, a focused electron beam allows for precise engineering of a graphene-based field-effect transistor (FET). In this study, the effect of electron irradiation on a graphene FET was systematically investigated. A separate evaluation of the electron beam induced transport properties at the graphene channel and the graphene-metal contacts was conducted. This provided on-demand strategies for tuning transfer characteristics of graphene FETs by focused electron beam irradiation.

DESIGN OF THE IF DISTRIBUTOR AND V/F CONVERTER FOR RECEIVER SYSTEM (우주전파 수신기를 위한 IF 분배기 및 V/F 컨버터 설계)

  • Kim, Kwang-Dong;Yim, In-Sung;Byun, Do-Young;Song, Min-Gyu
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.3
    • /
    • pp.83-87
    • /
    • 2007
  • We designed the Intermediate Frequency(IF) distributor for multi beam backend system and manufactured Voltage to Frequency Converter(VFC) to measure the multi-beam receiver performance. Multi beam receiver has 15 channel receivers and can get 15 spectrums at once. The multi beam receiver has more observation efficiency than single beam receiver. We manufactured the 15 IF distributors to distribute IF signal for Autocorrelation spectrometer that is radio signal processor. Also, we manufactured the VF Converter to test the performance measurement of receiver for Korea VLBI Network(KVN) system which is under-construct in Seoul, Ulsan and Jeju. As a result of performance measurement, we could obtain linearity of 99.4% on the input power vs output frequency and measured the operating range of input frequency.